
Symmetry and Stochastic Gene Regulation

Alexandre F. Ramos* and José E. M. Hornos
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Lorentz-like noncompact Lie symmetry SO(2,1) is found in a spin-boson stochastic model for gene
expression. The invariant of the algebra characterizes the switch decay to equilibrium. The azimuthal
eigenvalue describes the affinity between the regulatory protein and the gene operator site. Raising and
lowering operators are constructed and their actions increase or decrease the affinity parameter. The
classification of the noise regime of the gene arises from the group theoretical numbers.
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Despite the huge amount of data collected during the
genomic era and the elucidation of some basic mechanisms
of gene regulation in � phage and E. coli, the understand-
ing of gene expression remains an important open problem.
Growth, development, and other cellular functions are
controlled by cascades of genes, ordered expressed in
time and space [1,2]. Such a web of gene interactions
shows a remarkable complexity even in a simple prokary-
otic organism [3]. A robust strategy to handle these sys-
tems is the decomposition of the entire network in
elementary building blocks related to specific biological
functions [4,5]. In recent years a series of important ex-
perimental developments have provided a large amount of
data on regulation chains in bacteria, yeast, and Drosophila
which renders feasible the modeling of those elementary
circuits [6–9].

The presence of noise, caused by a frequently small
number of molecular species in a cell [10,11], has been
observed in several experiments involving the monitoring
of fluorescence microscopy [12]. Consequently, reliable
data on protein concentrations were obtained and signifi-
cant fluctuations around the mean value were observed.
Two different approaches have been employed in the theo-
retical treatment of noise. In the first, ordinary nonlinear
phenomenological equations are written for the molecular
concentrations, followed by the introduction of noise by
the Langevin mechanism [13]. Microscopic master equa-
tions for the protein distributions are emphasized in the
second approach [14,15]. Mean values, square root devia-
tion, etc., are then calculated from these probabilities. In
this context, a remarkable spin-boson or binary model has
been proposed [16,17] and solved analytically for an auto
interacting gene [18] and also for noise induced by external
repression [19].

In this Letter we show that the equations for this model
exhibit a continuous Lorentz-like noncompact Lie symme-
try SO(2,1). The general angular momentum or Casimir
operator of the algebra has a simple biological implication:
it characterizes how the system approaches the stationary
state. The raising and lowering operators are related to the
affinity of repressing proteins to the gene operator site. The

azimuthal and total angular momentum are arbitrary real
numbers, in contrast to the SO(3) operators, and are related
to the cellular noise.

In the spin-boson model protein synthesis is described
by a Markov process for the number n of free proteins in
the cytoplasm produced by the corresponding gene. The
system has two states, in the first the operator site is
occupied by a repressive protein while in the second the
operator site is vacant. The probability to find the gene
without a repressing protein and having around n proteins
is �n, otherwise the probability is �n. The master equa-
tions are
 

d�n
dt
� k��n�1 � �n� � ���n� 1��n�1 � n�n� � hn�n

� ~f�n; (1)

 

d�n
dt
� �k��n�1 � �n� � ���n� 1��n�1 � n�n�

� hn�n � ~f�n; (2)

where the parameter k is the rate of protein synthesis while
� is the protein decay rate. The parameters h and ~f regulate
the binding and unbinding rate, respectively. The model
also allows a repressed production with a small rate �k,
where �< 1.

The model was solved by the celebrated generating
function method in which the differential-difference equa-
tions above are replaced by partial differential equations
introducing holomorphic functions defined by

 ��z; t� �
X1
n�0

�n�t�zn; ��z; t� �
X1
n�0

�n�t�zn; (3)

the resulting equations are

 

@�
@�
� �z� 1�

�
N�� z0

@�
@z

�
� �z0 � 1�z

@�
@z
� f�; (4)

 

@�
@�
� �z� 1�

�
N��� z0

@�
@z

�
� �z0 � 1�z

@�
@z
� f�;

(5)

PRL 99, 108103 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
7 SEPTEMBER 2007

0031-9007=07=99(10)=108103(4) 108103-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.99.108103


where
 

� � ��� h�t; N �
k

�� h
;

f �
~f

�� h
; z0 �

�
�� h

:
(6)

A second-order differential equation can be written by
solving the stationary Eq. (4) for � and replacing it in
Eq. (5),

 p
d2�
dz
� q

d�
dz
� r� � 0; (7)

where
 

p �
z� z0

N�1� �=z0�
;

q �
1� b� N�1� �=z0��z� z0�

N�1� �=z0�
;

(8)

and

 r �
2N��z� z0� � �z0 � ���1� b�

2�z0 � ��
� a�

1� b
2

: (9)

The constants a and b are given by

 a � f�1� ��=�z0 � �� and b � f� �1� z0�N:

(10)

The Eq. (7) has a simple pole at z � z0 and an irregular
singularity at infinity, suggesting a solution in terms of the
confluent hypergeometric functions [20]. In fact, the sta-
tionary solutions are
 

��z� � c�1 a
b
z0 � �
1� �

exp�N�=z0�z� 1��

�M�1� a; 1� b; N�1� �=z0��z� z0��; (11)

 

��z� � c�1 exp�N�=z0�z� 1��

�M�a; b; N�1� �=z0��z� z0��� ��z�; (12)

 

��z� � ��z� � ��z�

� c�1 exp�N�=z0�z� 1��M�a; b; N�1� �=z0�

� �z� z0��; (13)

where,

 c � M�a; b; N�1� �=z0��1� z0��: (14)

The probabilities �n can be recovered calculating

 �n �
1

n!

dn�
dzn
�z�jz�0: (15)

For sake of simplicity, from here, we restrict ourselves to
the case � � 0. The total probabilities are easily calculated
and are

 �n �
1

n!

Nn

c
�a�n
�b�n

M�a� n; b� n;�Nz0�: (16)

The symmetry emerges if we consider the operator

 Lz �
z� z0

N
d2

dz2 �
1� b� N�z� z0�

N
d
dz
�

1� b
2

;

(17)

comparing with Eq. (7) we see that stationary solution
obeys

 Lz��z� � m��z�; (18)

with m � a� �1� b�=2. Stating the system as an eigen-
value problem we can consider the Cartan companions of
this operator, namely,

 L� �
z� z0

N
d2

dz2 �
1� b
N

d
dz
; (19)

and
 

L� �
z� z0

N
d2

dz2 �
1� b� 2N�z� z0�

N
d
dz

� N�z� z0� � 1� b: (20)

Calculating the commutators we obtain

 �Lz; L	� � 	L	; �L�; L�� � �2Lz; (21)

which is the rotational algebra with the ‘‘wrong sign’’, that
is the so�2; 1� algebra. The invariant operator is well
known,

 C � L2
z � L�L�=2� L�L�=2; (22)

and whose eigenvalue is

 C � l�l� 1�; (23)

where l � ��1� b�=2. Since the quantities a and b are
real, the representation given here is unitary and also
unbounded above and below [21].

The biological meaning of the invariant can be under-
stood considering the time dependence of the probability
generating functions. The Eqs. (4) and (5) have the general
form

 

d�

dt
�H�; (24)

where H is a two-by-two matrix constructed from the
Eqs. (4) and (5) and � � ����T . The solution of the
Eq. (24) is given by expanding � over the basis of the
eigenfunctions of the operator H . Although the eigen-
functions of H cannot be expressed in terms of hyper-
geometric functions, the eigenvalues can be easily
calculated under the requirement of analyticity. We search
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for analytical solutions around z0

 ��z; t� � e�t�z� z0�
j ~��z�; (25)

where ~��z� is analytical. The eigenvalues � are

 �j1 � ��b� j���� h�; j � 0; 1; 2; . . . ; (26)

where the analyticity of ��z� imposes j to be integer and
we see that b is the relative frequency for the smallest
eigenvalue which controls the approach of the switch to
equilibrium.

The action of the raising and lowering operators on the
generating function can be calculated using the Kummer
relations:

 L�M�1� a; 1� b; N�z� z0��

� �a� b�M�a; 1� b; N�z� z0��; (27)

 

L�M�a; 1� b;N�z� z0�� � aM�1� a; 1� b;N�z� z0��;

(28)

therefore we see that the parameter a � f=� is increased
(decreased) by L� (L�) increasing the affinity factor f.

The biological quantities of the model were calculated in
terms of the group theoretical numbers b, a, and z0 by
solving the Eqs. (10) for f and N,

 f � az0; N �
b� az0

1� z0
; (29)

where we considered � � 0. SinceN 
 0, the relation b�
az0 is greater or equal to zero. Considering that a vector of
an irreducible representation is fixed by b and a, the
possible values of z0 are in the interval (0,1) if a � b or
in the interval �0; b=a� for a > b. Note that z0 cannot be
zero or one, because in these limits b should go to zero or
a, respectively.

Finally, we calculate the noise as function of the group
theoretical numbers, b and a. The noise, expressed in terms

of the Fano factor � � � �n2 � �n�= �n, is shown in Figs. 1(a)
and 1(b). Each curve in these figures corresponds to differ-
ent values of a for fixed b. Figure 1(a) corresponds to a fast
switch, which reaches rapidly equilibrium while Fig. 1(b)
describes a slow switch. The curves in the bottom of the
plot have a values greater than b. The top curves corre-
spond to a < b and we also can see a squared single point
for a � b. The parameter b labels an irreducible represen-
tation of the group SO(2,1) and a denotes a vector in the
representation space. In the case a > b the Fano factor is
smaller than 1, a sub-Fano stochastic process, while for
a � b we have a Fano process. The super-Fano behavior
occurs for a < b. In all cases we see that if the representa-
tion label number a and b are fixed the mean protein
number will range in a defined interval. In the sub-Fano
regime the interval is 0 � �n < �n0 and it is �n0 < �n <1 for
super Fano. �n0 � aM�a� 1; b� 1; b�=M�a; b; b� is the
protein mean number in cytoplasm for z0 going to zero
and the corresponding noise is 1� ab= �n� �n. The Fano
process is degenerate, since in this case the mean number
of proteins is equal to b, and the noise is equal to one for
any value of z0. Biologically, this means that if the relative
switching time is fixed and also the affinity, the possible
mean values are restricted.

In Fig. 2 we show the probability distributions. Each plot
has fixed a and b, and the lines are for different z0. Sub-

FIG. 1 (color online). Fano factor, � � �n2= �n� �n, versus
mean number of synthesized proteins, �n, for a fast (a) and a
slow (b) switch state. For a � b, we choose z0 in the interval
(0,1), in the contrary case, a > b, the interval is: �0; b=a�. For
a < b, the noise is greater than one, characterizing a super-Fano
regime. Fano states, with noise equal to unity, are obtained when
b � a and �n � b. The sub-Fano processes occur when a > b.

FIG. 2 (color online). Probability distributions, �n. Sub-Fano
probabilities for fixed a and b are shown for fast and slow
switches in (a) and (b), respectively, whose mean number of
proteins are f12:3; 11:8; 11:1; 6:9; 0:4g and f1:2; 0:7; 0:04g, in
crescent order of z0. Fast and slow switches with super-Fano
behavior are displayed in (c). The mean number of proteins and
the correspondent noise of each curve are given by
f7:7; 13:8; 18:9; 34:0g and f1:3; 1:6; 1:9; 2:7g, in crescent order
of z0. In (d) the values for the mean number of proteins and
noise are f0:7; 1:7; 3:8; 9:7g and f1:2; 1:6; 2:4; 4:7g. This plot also
shows the presence of two peaks in the probability distribution.
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Fano probability distributions for fast and slow switch
states are shown in Figs. 2(a) and 2(b), respectively. In
both, the diminishing of z0 leads to a right displacement of
the top of the probability distributions. In Figs. 2(c) and
2(d), super-Fano probability distributions are given for fast
and slow switch states, respectively. Here, the maximum
probability is displaced to right with the growing of z0.
Probability distributions of a super-Fano slow switch state
present two peaks for low values of a and z0 close to 1, as
we see in Fig. 2(d). Probability distributions of fast switch
states have their peaks centered around greater values of n
than slow switch states as we see by comparing Figs. 2(a)
and 2(c) with Figs. 2(b) and 2(d). Anyway, super-Fano with
low b are noisier than high b states. This suggests that a
gene in a fast switch state is more copious and less fluctu-
ating than a gene in a slow switch state. Moreover, the
existence of two peaked probability distributions indicate
that the bistable behavior of the gene occurs for slow
switch states, since there is no similar regime for high
values of b. Another biological interpretation for the group
theoretical label a can be obtained comparing our results
with [18]. The adiabatic parameter defined in our previous
work is here the label a of a vector in the representation b.
Using this nomenclature we see that if the relative switch-
ing time decay b is bigger than the adiabatic parameter the
noise regime is super-Fano otherwise it is sub-Fano.

We conclude by summarizing our results. The notions
of symmetry and invariance have been introduced in the
field of stochastic gene expression by rephrasing the
differential-difference master equation in the language of
differential operators allowing the set up of the Lie algebra
theory. We found a SO(2,1) Lie symmetry, invisible in the
traditional form of the master equation, explicitly con-
structed with differential operators. The biological mean-
ing of the symmetry was revealed showing that the Lie
algebra invariant is the decay time of the switch. The group
theoretical representation labels are connected with the
nature of the system noise measured by the Fano factor.
Representation vectors for which m>�l correspond to a
sub-Fano noise while super-Fano behavior occurs in the
opposite case. Symmetry should be considered as a starting
point followed by the inclusion of the symmetry breaking
terms such as gene interactions, dimmer formation [22],
etc. Although there are few instances of the application of
symmetry groups to biological theory [23], the group
theoretical machinery has been shown to be a powerful
tool in mathematics and physics and can provide here a
composition principle for understanding more complex
systems.
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