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 Abstract 

 The theory of conceptual fields is a developmental theory. It has two aims: (1) to 
describe and analyse the progressive complexity, on a long- and medium-term basis, of 
the mathematical competences that students develop inside and outside school, and 
(2) to establish better connections between the operational form of knowledge, which 
consists in action in the physical and social world, and the predicative form of knowl-
edge, which consists in the linguistic and symbolic expressions of this knowledge. As it 
deals with the progressive complexity of knowledge, the conceptual field framework is 
also useful to help teachers organize didactic situations and interventions, depending 
on both the epistemology of mathematics and a better understanding of the concep-
tualizing process of students.  Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Science is reduction. But not all reductions are fruitful. It is more or less ac-
cepted today that Piaget provided a superb contribution to the psychology of devel-
opment, when behaviourists had not been able to do so. Nevertheless he was slowed 
down in the analysis of the mathematical contents by his fascination for logic and his 
hope to be able to reduce to logical structures the progressive complexity gained by 
children: for instance, his analysis of the ‘formal stage’ led him to identify the group 
of INRC transformations as the characteristic that would account for the under-
standing of proportionality by children. By doing so he did not pay enough attention 
to the contents that are specific to mathematics, namely the properties of func-
tions.
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  Simple proportion is a function of one variable; and two kinds of properties are 
essential:
• the isomorphic properties of linear functions:

  f(x + y) = f(x) + f(y) and f(ax) = af(x)

  the constant coefficient f(x) = kx

  • double proportion is the case when a variable is proportional to two other 
independent variables. The properties of bilinear functions are then relevant.

  These properties would have better described the different competences emerg-
ing over a few years: the recognition and analysis of products and quotients of di-
mensions as is the case for the relationships between length, area and volume, or 
between measures in physics [for further details, see Vergnaud, 1983]. Nevertheless, 
in the theory of conceptual fields, I borrow from Piaget other important aspects of 
his work: first the concept of scheme, to which I give a larger interpretation than his, 
the thesis that knowledge is adaptation (accommodation and assimilation), as well 
as the overall Piagetian conception that action and representation play the main part 
in development.

  I will first stress the importance of activity, schemes and situations for psychol-
ogy, and then present a definition of a conceptual field as a set of situations and con-
cepts. The concept of scheme also requires some attention, because it plays a crucial 
role in the analysis of the operational form of knowledge, as distinct from the pred-
icative form. Finally, I will try to discuss different and complementary aspects of the 
concept of representation.

  The Concept of Scheme 

 The concept of scheme was not introduced by Piaget: several philosophers of 
the 19th century mentioned it after Kant had introduced it and it was also used by 
several psychologists during the early decades of the 20th century, especially Re-
vault d’Allonnes [e.g. 1915, 1920] and Janet [e.g. 1928] in France. However, Piaget 
was the first to provide concrete and convincing examples of its significance with 
his descriptions of early development in infants and young children. His book  La 
naissance de l’intelligence   chez l’enfant  (‘The origins of intelligence in the child’) 
[Piaget, 1968a] is not only the ‘invention’ of infant cognitive development as a new 
field of research, but also the demonstration that gestures and perceptual acts are 
the empirical basis for its analysis. Therefore, the sequential organization of activ-
ity for a certain situation is the primitive and prototypical reference for the concept 
of scheme.

  From this point of departure, several questions arise:
  1 Is it possible to theorize about reasoning with the concept of scheme, and spe-

cifically about mathematical reasoning? 
 2 What is the role of schemes in the functioning of representation? Why and how 

are they components of representation? 
 3 What is their relation to other components like concepts, linguistic entities and 

symbols? 
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 Activity, Schemes and Situations 

 The theory of knowledge as an adaptation process is essential; but what is it that 
adapts itself, and to what? The most reasonable answer to date is that what adapts are 
the forms of organization of activity, the schemes, and they adapt to situations. 
Therefore, the pair scheme/situation is conceptually more interesting and more pow-
erful than the pair response/stimulus, and it is also more viable to describe and ana-
lyse behaviour and representation using the pair scheme/situation than the pair sub-
ject/object.

  If the first reference for schemes is what Piaget (and most psychologists at the 
beginning of the 20th century) called ‘sensory-motor’ activity, the first theoretical 
question to be raised is how the gestural and perceptual actions undertaken in the 
real world are or become internal resources. It is not sufficient to say that schemes 
lie in the neurons and the genes, because it is hopeless to try to describe the organi-
zation of one single scheme as an organized sequence of active neurons, or as a set of 
genes, due to the billions of elements involved.

  Moreover, this biological description misses the critical point of relating the 
internal and the external parts of activity, an essential point to promote an inte-
grated framework of psychology. The best fruitful idea I can find is the idea, both 
Piagetian and Vygotskian, of interiorization (or internalization) of activity. This 
idea is well developed in Piaget’s [1968b] book  La formation du symbole chez 
l’enfant  and in the first chapter of Vygotsky’s [1962]  Thought and Language . The 
paradox is that, in his radical critique of the Piagetian ‘egocentric characteristic’ 
of children’s language, Vygotsky develops the view that egocentrism is rather ‘a 
step in the internalization process’ of dialogues, and offers the same idea of ‘inte-
riorized imitation’ that Piaget understands as one of the first processes of repre-
sentation.

  How does this theory relate to the development of mathematical knowledge? Do 
we have examples of schemes in mathematics?

  The very first example I will give is the scheme of counting objects. When chil-
dren are able to count a small set of objects, they use three different repertoires of 
gestures: movements of arms and fingers, eye movements and words. The efficacy of 
the scheme depends on the one-to-one correspondence between these three activi-
ties and the set of objects in the physical world. It also relies on the ability to conclude 
the episode by wording the cardinal of the set, which is more than the last element 
of the set: cardinals can be added whereas last elements cannot. The concept of num-
ber is characterized by the additive property of cardinals, a property that equivalence 
and order relationships do not have. The concept of cardinal is implicit in the child’s 
activity: it is a concept-in-action.

  Another early example of scheme in mathematics is the perceptual activity used 
to recognize a building or a figure as symmetrical. The checking of symmetry can 
be more sophisticated than what 10-year-olds are able to do (for instance they would 
not check the equality of angles, or even the equality of distances to the axis of sym-
metry). But even when the control is loose, some invariant properties of symmetry 
are considered: they are also concepts-in-action.
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  What Is a Conceptual Field? 

 It is at the same time a set of situations and a set of concepts tied together. By 
this, I mean that a concept’s meaning does not come from one situation only but 
from a variety of situations and that, reciprocally, a situation cannot be analysed with 
one concept alone, but rather with several concepts, forming systems.

  As schemes and situations are the roots of cognitive development, and because 
concepts-in-action are essential parts of schemes (see definition below), the develop-
ment of a conceptual field requires children’s meeting and being faced with contrast-
ing situations. Researchers also need to carefully analyse the different ways by which 
children tackle them. In this paper, I will give only one example, the conceptual field 
of additive structures. However, there are other good examples, like multiplicative 
structures, geometry of figures, positions and transformations, and elementary al-
gebra.

  There are two prototypical situations for addition: the binary combination of 
two parts into a whole (‘4 boys and 5 girls for Kath’s birthday party; how many chil-
dren altogether?’), and the increase of an initial state (‘Richard had 4 marbles, he wins 
5; how many marbles does he have now?’), which can be better modelled by a unary 
operation, a function from the set of possible initial states into the set of final states.

  The distinction between these two prototypes is made clear when one considers 
the variety of problems that can be generated.

  In the first case, binary combination of two parts into a whole, only two classes 
of problems can be generated: knowing the two parts find the whole, and knowing 
the whole and one part find the other part.

  In the second case, six classes of problems can be created: knowing the initial 
state and the transformation find the final state (by increasing or decreasing the ini-
tial amount), knowing the initial and the final states find the transformation, when 
the final state is bigger or smaller than the initial one, knowing the final state and 
the transformation find the initial state by increasing or decreasing the final state. 
Among these six classes of situations, four require a subtraction and only two an ad-
dition. Addition and subtraction are not merely inverse of each other.

  There are large and significant differences in the success and failure met by chil-
dren when they have to deal with the different classes of problems that can be gener-
ated starting from these two prototypes and from other cases like the quantified 
comparison of quantities (‘Who has more, and how much? Find the compared quan-
tity, or the referred one’), or else the combination and decomposition of transforma-
tions.

  The simplest addition and subtraction situations can be dealt with by some 4-
year-olds, and yet some situations requiring just one addition are still failed by the 
majority of 13- or 14-year-olds: ‘Robert played two games of marbles; he remembers 
that he lost 7 marbles in the second game, but he does not remember what happened 
in the first game; by counting his marbles in the end, he finds that altogether, he won 
5 marbles; what happened in the first game?’

  Not only are there contrasts between situations, but also between schemes, i.e., 
between ways of tackling the situations. There are of course wrong ways, but one can 
also observe different valuable schemes for the same class of situations, depending 
for instance on the numerical values of the variables. Let us take the following situ-
ation: ‘John has just won 7 marbles in playing with Meredith; now he has 11 marbles; 
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how many marbles did he have before playing?’ Some children may of course sub-
tract 7 from 11, others may count backwards from 11 down to 7 and count the num-
ber of digits, others may count from 7 upwards to 11, and still others may even make 
a hypothesis about the initial state (5 for instance), apply the increase of 7 marbles, 
find 12, which is too big, and correct their hypothesis. This last scheme is due main-
ly to the conceptual difficulty of inverting the increase of 7, by applying a subtraction 
of 7 to the final state. This operation of thinking requires a theorem-in-action:

  If T (I) = F then I = T  –1  (F)

  where I stands for initial state, F for final state, T for direct transformation, and T  –1  
for inverse transformation.   This theorem can also be represented by an arrow dia-
gram ( fig. 1 ).

  These two symbolic representations (the algebraic and the diagram) show that 
there are also contrasts between ways of symbolizing objects and relationships. Un-
doubtedly the algebraic representation would not be useful to children at the pri-
mary level, whereas the arrow diagram may at least convey the meaning of going 
forward and backward. This is essential, but does not solve the problem of under-
standing that +7 and –7 are inverse of each other. Children need several examples of 
the inverse character of the plus operation and the minus one. Several kinds of aware-
ness are needed:
  – You lose what you have just won; or you win what you have just lost. 
 – You go backwards as many steps as you have gone forwards and reciprocally. 
 – You give back to somebody the amount that he has lent to you or recover from 

somebody the amount of money you had lent him. A debt is therefore the inverse 
of a credit. 
 Not only are increase and decrease, or movements forwards and backwards em-

pirical roots for positive and negative numbers, but also relationships between two 
persons (lending and borrowing) are examples of positive and negative numbers. 
This is important for the teaching of algebra and accountancy.

  A provisional conclusion is that the development of a conceptual field involves 
situations, schemes and symbolic tools of representation. A comprehensive defini-
tion of representation is needed, but I will come to it only in the conclusion of this 
paper.

 

+7

–7

11

  Fig. 1.  Arrow diagram. 
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  The Operational Form of Knowledge 

 Researchers who address the development of mathematical competencies cannot 
be satisfied with the view that mathematical words and sentences, as they appear in 
the textbooks or in the teachers’ comments and explanations, would be a sufficient 
criterion to evaluate students’ competencies. The test of their activity in situations is 
essential, particularly in novel situations, when they have to adapt their cognitive re-
sources and face a problem never met before. The function of schemes, in the present 
theory, is both to describe ordinary ways of doing, for situations already mastered, 
and give hints on how to tackle new situations. Schemes are adaptable resources: they 
assimilate new situations by accommodating to them. Therefore the definition of 
schemes must contain ready-made rules, tricks and procedures that have been shaped 
by already mastered situations; but these components should also offer the possibil-
ity to adapt to new situations. On the one hand, a scheme is  the invariant organization 
of activity for a certain class of situations;  on the other hand, its analytic definition 
must contain open concepts and possibilities of inference. From these considerations, 
it becomes clear that schemes comprise several aspects defined as follows:
  – The intentional aspect of schemes involves a goal or several goals that can be 

developed in subgoals and anticipations. 
 – The generative aspect of schemes involves rules to generate activity, namely the 

sequences of actions, information gathering, and controls. 
 – The epistemic aspect of schemes involves operational invariants, namely con-

cepts-in-action and theorems-in-action. Their main function is to pick up and 
select the relevant information and infer from it goals and rules. 

 – The computational aspect involves possibilities of inference. They are essential 
to understand that thinking is made up of an intense activity of computation, 
even in apparently simple situations; even more in new situations. We need to 
generate goals, subgoals and rules, also properties and relationships that are not 
observable. 
 The main points I needed to stress in this definition are the generative property 

of schemes, and the fact that they contain conceptual components, without which 
they would be unable to adapt activity to the variety of cases a subject usually meets. 
I also feel the need to add several comments in what follows.

  The dialectical relationship between situations and schemes is so intricate that 
one sometimes uses an expression concerning situations to refer to a scheme, for in-
stance  high jumping,  or  solving equations with two unknowns,  as well as an expression 
concerning schemes to refer to a situation, for instance  rule of three situations  (the 
rule of three is a scheme, not a situation).

  Another clarification concerns the relationship between concepts and theo-
rems: the tie is so intricate that many researchers tend to confuse them. The differ-
ence is that a theorem can be true or false, because it is a sentence (or a proposition). 
A concept is not a sentence and therefore cannot be true or false, only relevant or not 
relevant. Another important point is that one may think a sentence is true that in 
fact is false; it is still a theorem-in-action. There is little difference, from the point of 
view of activity, between a true proposition and a false one considered as true.

  The relationship between theorems and concepts is dialectical, in the sense that 
there is no theorem without concepts, and no concept without theorems. Yet the dis-
tinction is important in the theory of conceptual fields, because it is a theory of de-
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velopment: for instance, the analysis of additive structures shows that the concepts 
of addition and subtraction develop over a long period of time, through situations 
calling for theorems of very different levels.

  The following example, in the domain of multiplicative structures, makes the 
difference very clear: ‘suppose a student needs to find the quantity of flour that can 
be made with the corn production of a big farm: 182 tons. He has the information 
that one needs 1.2 kg of corn to make 1 kg of flour.’ The scheme that comes to his 
mind after some time (which means that it is not a straightforward idea) consists in 
trying to find the ratio between 182 tons and 1.2 kg. This ratio is a scalar, a number 
that does not refer to a dimension, as it is the quotient of two magnitudes of the same 
kind (quantities of corn). But the choice to compute that ratio comes from the idea 
that it can be used to find the corresponding quantity of flour: it is the same ratio 
between the two quantities of corn (182 tons and 1.2 kg) and the corresponding two 
quantities of flour. Therefore, when one knows the ratio, the only thing to do is mul-
tiply it by the quantity of flour corresponding to 1.2 kg of corn:

  F (ratio  !  1.2 kg) = ratio  !  F (1.2 kg)

  This theorem is totally implicit and the process requires, also implicitly, that F 
(182 tons) be identified with F (ratio  !  1.2 kg), and that F (1.2 kg) be identified with 
1 kg of flour.

  The calculation also requires the change of units, from tons to kilograms. The 
problem would be a little simpler if the production of the farm were given in kilo-
grams, but it is not usual to do so for big productions.

  The scalar ratio between 182 tons and 1.2 kg is a concept-in-action, not a theo-
rem-in-action, but its use is invoked by the theorem.

  The above scheme is not an algorithm, but it could be formalized into the fol-
lowing algorithm: ‘in a four-term proportion, find the ratio between the two magni-
tudes referring to the same kind of quantity, and then apply it to the other quantity.’ 
It is one of the practical burdens of mathematicians to discover or invent algorithms, 
and it is the job of students to learn them. Algorithms are schemes, but not all schemes 
are algorithms. The reason for this is that schemes do not have all the characteristics 
of algorithms: they lack ‘effectivity,’ namely the property to reach a solution, if there 
is one, in a finite number of steps. However, the organization of activity is very sim-
ilar in schemes and algorithms. This similarity includes the fact that algorithms 
taught to students are often appropriated by them under a simplified organization; 
they can even change, after some time, into erroneous schemes.

  The Operational Form and the Predicative Form of Knowledge 

 Complexity comes not only from doing, but also from putting something into 
words and saying it. Enunciation plays an essential part in the conceptualization 
process. One of the difficulties that students encounter when they learn mathematics 
is that some mathematical sentences and symbolic expressions are as complex as the 
situations and thought operations needed to deal with them. Some researchers even 
consider that the difficulty of mathematics is mainly a linguistic difficulty. This view 
is wrong, because mathematics is not a language, but knowledge. Still, understand-
ing and wording mathematical sentences plays a significant role in the difficulties 
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students encounter. To illustrate this point, let us take two situations in which stu-
dents have to draw the symmetrical shape of a given figure. These situations contrast 
with each other, both from the point of view of the schemes that are necessary for 
the construction and from the point of view of the sentences that one may have to 
understand or produce on these occasions ( fig. 2 ).

   The first figure corresponds to a situation likely to be presented to 8- or 10-year-
old students, in which they have to complete the drawing of the fortress symmetri-
cally from the vertical axis. The second one could be typically given to 12- or 14-year-
olds in France: construct a triangle symmetrical to triangle ABC in relation to d
(‘d’ here refers to the dotted line).

  In the first case, there are some coordination difficulties because the child needs 
to draw a straight line just above the dotted line, neither too high nor too low, and 
everybody knows that it is not that easy with a ruler; there is the same kind of awk-
wardness for the departure point and the arrival point. There are also conditional 
rules. For example, ‘one square to the left on the part already drawn, one square on 
the right on the part to be drawn,’   or else ‘two squares down on the figure on the left, 
two squares down on the right,’ or else ‘one square to the right on the left figure, one 
square to the left on the one on the right,’ starting from a reference point homologous 
to the point of departure on the left.

  These rules are not very complex. Nevertheless they rely upon several concepts-
in-action and theorems-in-action concerning symmetry and conservation of lengths 
and angles. As all angles are right angles and lengths are expressed as discrete units 
(squares), the difficulty is minimal.

  In the second case, drawing the triangle A � B � C � , symmetrical to triangle ABC 
in relation to line d, is much more complex, with the instruments usual in the class-
room (ruler, compass, set square). Even the reduction of the triangle to its vertices as 
sufficient elements to complete the task is an abstraction that some students do not 
accept easily because they see the figure as a non-decomposable whole. One step fur-
ther, using d as the axis of symmetry for segments AA � , BB � , CC � , is far from trivial. 
Why draw a circle with its centre in A, and why should we be interested in the inter-
sections of that circle with line d? One can also use a set square and draw a perpen-
dicular line from A to d, measure the distance from A to d, go across line d to con-

d

A

C

B

  Fig. 2.   Two situations for symmetry   . 
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struct A �  at the same distance of A to d. But how can I think of the distance to be the 
same when there is no line yet?

  The epistemological jump from the first to the second situation is obvious. But 
there are also big jumps between different sentences that are likely to be articulated 
on these occasions. I will use French rather than English because of the syntax of 
definite articles in French.
  1  La forteresse est symétrique  (‘The fortress is symmetrical’). 
 2  Le triangle A � B � C �  est symétrique du triangle ABC par rapport à la droite d 

 (‘ Triangle A � B � C �  is symmetrical to triangle ABC in relation to line d’). 
 3  La symétrie conserve les longueurs et les angles  (‘Symmetry conserves lengths 

and angles’). 
 4  La symétrie est une isométrie  (‘Symmetry is an isometry’). 

 Between sentence 1 and sentence 2, there is already a qualitative jump: the ad-
jective  symétrique  moves from the status of a one-element predicate to the status of 
a three-element predicate (A is symmetrical to B in relation to C).

  Between sentence 2 and sentence 3, the predicate  symétrique  is transformed into 
an object of thought,  la symétrie,  which has its own properties: it conserves lengths 
and angles. Nominalization (i.e., to form a noun from another word class or a group 
of words) is the most common linguistic process used to transform predicates into 
objects. In sentences 1 and 2, the idea of symmetry is a predicate (propositional func-
tion); in sentence 3, it has become an object (argument). Lower-case ‘s’ is the kind of 
symbol used by logicians for arguments, whereas upper-case ‘S’ is used for predi-
cates. The two new predicates, Cl (conserving lengths) and Ca (conserving angles), 
are thus properties of this new object s.

  When we move from sentence 3 to sentence 4, a new transformation takes place; 
the retention of lengths and angles then becomes an object of thought: isometry. This 
time the predicate is the inclusion relationship between two sets: the set of symme-
tries S and the set of isometries I:

  S C I

  The meaning of  la  in  la symétrie  in sentences 3 and 4 is the universal quantifier 
meaning. The  la  in  la forteresse  or  la droite d  in sentences 1 and 2 has a deictic value: 
‘this fortress,’ ‘this line d.’ Obviously the correspondence between signified and sig-
nifiers is not a one-to-one correspondence on a lexical level.

  Mathematical, scientific and technical texts, and more generally texts of a cer-
tain level (philosophy, literature, etc.) are full of such variations in the meaning of 
words, even though authors try to make them unambiguous.

  Inevitably the succession of jumps in the operational and in the predicative 
forms of mathematical knowledge causes difficulties for students. Teachers are not 
aware enough of these jumps.

S(f)
] Cl(s) and Ca(s)

S(A�B�C�, ABC,d)
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  Representation 

 The different considerations and examples given above can be put together to 
theorize about the concept of representation. Behaviourists wanted to get rid of that 
concept, when they should have considered it as a central concept of psychology, like 
the concepts of force and movement in mechanics, or those of evolution and cell in 
life sciences. They thought it was impossible to have access to representation, but isn’t 
this the actual situation of science? Newton did not have access to the attraction 
forces, neither Darwin to the succession of species, nor Mendel to genes.

  Science is reduction, and the following ideas are a drastic reduction of psycho-
logical phenomena. But at least they offer possibilities to describe and analyse some 
important representational processes.

  Four different components of representation can be distinguished, not as inde-
pendent from one another, but as distinct in nature: (1) the flow of consciousness,
(2) language and other sets of symbols, (3) concepts and categories and (4) sets and 
subsets of schemes.

  The Flow of Consciousness 

 Every individual has some experience of the flow of consciousness. It is the most 
obvious proof of the existence of representation as psychological phenomena, even 
if it does not provide us with a fair and sufficient conception. This quasi-permanent 
flow of images (visual, auditory, kinaesthetic, somaesthetic) goes both with waking 
hours and dreaming, as well as with some consciousness of one’s own gestures and 
words, sometimes only sketched in the mind. We cannot usually analyse this flow of 
percepts, ideas, images, words and gestures, but it testifies that representation works 
in a spontaneous and even irrepressible way. The flow of perception is an integral 
part of the flow of consciousness, also the flow of imagination, whether it is associ-
ated with perception or not. The fact that perception is a component of representa-
tion is important for psychological theory, as it is in the study of perception that one 
sees the essential role of concepts and categories in selecting information. The im-
portance given here to consciousness is not contradictory with the existence of un-
conscious phenomena, or with the fact that there are privileged moments of sudden 
awareness, not reducible to the ordinary flow of consciousness.

  Language and Symbols 

 Without words and symbols, representation and experience cannot be commu-
nicated. On top of that, thinking is often accompanied, or even driven, by linguistic 
and symbolic processes. Vygotsky had stressed that point very well. In the field of 
mathematics, numerical and algebraic notations play a very important part in con-
ceptualizing and reasoning processes, although they are not concepts by themselves; 
musical notation is not music either, but symphonies would not be possible without 
it. What would mathematical thinking be without language and symbols? The pred-
icative form of knowledge is obviously essential, even if it is not the first form of 
knowledge.
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  Concepts and Categories 

 Concepts and categories form the system with which we pick up information, 
with the aim of driving our activity in the most relevant way. This meaning of rep-
resentation is not as direct as the first two, because it rests on the thesis that percep-
tion is an important component of representation, even when we have no words to 
be associated with the objects and relationships on which the organization of our 
activity relies. The word ‘concept’ is taken here in a wider sense than usual; it is nor-
mally restricted to explicit objects of thought, whereas here it is extended to con-
cepts-in-action that are very often implicit in the course of activity. This is why I use 
the expression ‘operational invariants’ (instead of ‘concept’ and ‘theorem’) as much 
as I can. The distinction between conceptualizing and symbolizing is essential, up 
to the point where the understanding of words and sentences by different persons, 
particularly students and teachers, is not simply a binary relationship signifier/signi-
fied, but a ternary one with the interpretation privileged by operational invariants. 
A convincing example of such a process is the understanding of a formula like the 
formula for the volume of straight prisms:

  V = A  !  H

  where V = volume of the prism, A = area of the base and H = height of the prism.
  When they have to use it, students can read and interpret this formula in sev-

eral ways. Here are some of their interpretations:
  1 To calculate the volume I must know the area and the height and multiply one 

by the other. 
 2 To calculate the height I must know the volume and the area, and divide the 

volume by the area; this reading is already more difficult than the first one, as 
it is inverse. 

 3 Volume is proportional to the area when the height is held constant, and to the 
height when the area is held constant. This reading requires much more than 
understanding the operations of multiplication and division and the meaning 
of letters. It is not always mentioned in schoolbooks; yet it is the very reason for 
the formula. 
 Whatever the part of symbols may be in the conceptualizing process, one must 

not confuse concepts and symbols.

  Systems of Schemes and Subschemes 

 Representation is a dynamic activity, not an epiphenomenon that would accom-
pany activity without feeding it or driving it. Representation is neither a dictionary 
nor a library only, but also a functional resource: it organizes and regulates action 
and perception; at the same time, it is also the product of action and perception. 
Therefore, the operational form of knowledge must be considered as a component of 
representation. Schemes are essential: they organize gestures and action in the phys-
ical world, as well as interaction with others, conversation, and reasoning. Con-
sciousness often accompanies activity, but only partially: it is especially related to 
goals and subgoals, assessing the relevance of the information grasped, controlling 
the effects of action. The structure of consciousness is different from the structure 
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of activity: we are aware of the most relevant properties of objects, but more or less 
ignorant of the way activity is generated and the way subschemes are activated by 
superschemes. This hierarchical organization leaves room for improvisation and 
contingency: schemes and subschemes are often called upon by contingent aspects 
of situations; it is the reciprocal character of their adaptive function.

  Conclusion 

 It is essential for psychologists to recognize the central function of activity in 
the development of representation, competences and concepts. Because language 
and symbols play an important role in the conceptualizing process, many research-
ers identify conceptualization and symbolization, as if the wording and symbolizing 
activity were sufficient roots of knowledge, particularly mathematical knowledge. 
This is not the case. The analysis of situations and schemes shows that the concep-
tualizing process already takes place in the simplest forms of activity (even without 
language): the reason is that no action can be efficient without the identification of 
some objects and their properties. Even more complex concepts, to gain sense and 
operationality, need to be contextualized and exemplified in situations. Therefore, 
from a developmental point of view, a concept is altogether: a set of situations, a set 
of operational invariants (contained in schemes), and a set of linguistic and sym-
bolic representations.

  There are specific characters in mathematical concepts that need to be treated 
as such. This is the main reason, both theoretical and practical, why it is more fruit-
ful to use the framework of conceptual fields than logical structures to analyse the 
continuities and discontinuities of development in mathematics; also to imagine 
situations likely to push and help students to move along the multifaceted complex-
ity of the field.

  Finally, the operational form of knowledge and the predicative form are inter-
twined at all levels. There is no need to oppose one to the other; both are necessary 
to analyse the difficulties met by children and the way they can be overcome.
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