108. Soma Máxima

Conhecimento Geral

Um problema que é facilmente resolvido em uma dimensão é frequentemente muito mais difícil de ser resolvido em várias dimensões. Considere verificar a satisfabilidade de uma expressão booleana na forma normal conjuntiva, onde cada elemento da conjunção (AND) consiste de exatamente três disjunções (ORs). Este problema (3-SAT) é NP-completo. Já o problema 2-SAT pode ser resolvido eficientemente. Em contraste, alguns problemas pertencem a mesma classe de complexidade, independentemente da dimensão do problema.

O Problema

Dado um arranjo bidimensional de números inteiros positivos e negativos, encontre o sub-retângulo com maior soma. A soma de um retângulo é a soma de todos os elementos daquele retângulo. Neste problema, o sub-retângulo com maior soma é chamado de *sub-retângulo maximal*. Um sub-retângulo é qualquer sub-arranjo de tamanho 1x1 ou maior, localizado dentro do arranjo bidimensional. Como um exemplo, o sub-retângulo maximal do arranjo:

0	-2	-7	0
9	2	-6	2
-4	1	-4	1
-1	8	0	-2

é a extremidade esquerda inferior desse arranjo, e tem soma 15.

9	2	
-4	1	
-1	8	

Entrada e Saída

A entrada consiste de um arranjo de inteiros de tamanho N x N. A entrada começa com um único inteiro positivo N sozinho nessa linha, indicando o tamanho (largura e altura) do arranjo quadrado bidimensional. Este inteiro é seguido pelos N² inteiros separados por espaços em branco e novas linhas. Estes N² inteiros compõem o arranjo em ordem de linhas (isto é, todos os números da primeira linha, da esquerda para a direita; então todos os números da segunda linha da esquerda para a direita, etc). N pode ser tão grande quanto 100. Os números no arranjo variam de [-127,127].

A saída é a soma do sub-retângulo maximal.

Exemplo de Entrada

Exemplo de Saída