A Framework for Automatic Composition of Scientific
Experiments: Achievements, Lessons Learned and Challenges

Luciano A. Digiampietri', José J. Pérez-Alcazar!, Caio R. N. Santiago’,
Guilherme A. Oliveira'!, Adilson Khouri' and Jonatas C. Araujo'

Escola de Artes, Ciéncias e Humanidades da Universidade de Sdo Paulo - EACH-USP

digiampietri@usp.br

Abstract. Scientific workflows management systems (SWMS) play a very im-
portant role in the e-Science. This paper presents the new functionalities of a
SWMS that was originally developed fifteen years ago. These functionalities are
focused on the automatic composition and execution of workflows, and the trans-
parent use of local applications, Web Service and Java methods as the building
blocks of the scientific experiments.

1. Introduction

In the last years, several approaches were developed to facilitate the management of scien-
tific workflows, including: the graphical creation and execution of workflows, the use of
Semantic Web Services, the storage and track of workflows provenance data, the sharing
of workflows over the Web and the (semi-)automatic construction of workflows (using,
for example, artificial intelligence planning or recommendation techniques).

This paper aims to present achievements, lessons learned and current challenges
in a framework for the management of scientific experiments. This framework is our ex-
tension of a project started in the nineties [Seffino et al. 1999], and, this paper presents the
main functionalities developed in the last years, highlighting the automatic composition
and execution of workflows, and the transparent use of local applications, Web Service
and Java methods as the building blocks of the scientific experiments.

2. Basic Concepts

Workflows are now recognized as a crucial element of the e-Science infrastructure, work-
ing as the foundations where researchers can model, design, execute, debug, re-configure
and re-run their experiments [Deelman et al. 2009].

The manual composition of experiments is an arduous and susceptible to errors
task. Thus, automatic and semi-automatic solutions become popular in the academic
and industry communities. There are different strategies for automatic composition of
workflows, some use Artificial Intelligence (Al) techniques (such as planning or symbolic
model checking), other use Markov Models, or even interface matching techniques.

An alternative way to classify the automatic composition is according with
the kinds (or levels) of information that is available to the composition pro-
cess [Digiampietri et al. 2011]. There are three main categories: (a) syntactical composi-
tion: when the only information available is the (syntactical) data types of the interfaces
(matching inputs and outputs of the activities); it is typically used in approaches focused

on data transformation workflows; (b) semantical composition: when there are informa-
tion about the data types and the semantic concepts associated with each input and out-
put [Oh et al. 2007]. Domain ontologies are used to annotate the input and output data,
allowing a more precise composition process; and (c) functional composition: it is the
composition that considers the use of pre- and post-conditions (besides the information
about inputs and outputs) [Shin et al. 2009], it is the most complete type of composition,
where not only interface information is taking in account.

In this paper, the scientific experiments are defined as workflows composed man-
ually or automatically (using Al planning). The composition technique considers all the
available information (syntactic, semantic and functional) and the quality of the produced
workflows strongly depends on the kind, amount and quality of the available information.

3. Historical Description of WOODSS Framework

The first version of WOODSS (A Spatial Decision Support System based on Work-
Sflows) [Seffino et al. 1999] was implemented on top of a commercial Geographic Infor-
mation System to capture and store the interactions of the users, allowing sharing, updates
and re-execution of experiments. WOODSS evolved to a generic workflow management
system [Medeiros et al. 2005] to help scientists to specify, annotate, and share their mod-
els and experiments. The evolution of the framework included the storage of the work-
flows in databases (including input data and results), the semantic annotation and descrip-
tion of services as digital objects (easy to reuse and to execute) and a first approach in the
automatic composition of services.

Some of the extensions of the framework include the storage of provenance
data, the use of ontologies to describe data and services, and to allow the auto-
matic composition of Semantic Web Services using Artificial Intelligence Planning,
the development of traceability mechanisms and for helping in software component
reuse [Digiampietri et al. 2007, Barga and Digiampietri 2008, Digiampietri et al. 2013,
Zuiiiga et al. 2014]. The next section presents the new features focused on the compo-
sition and execution of the scientific experiments, regarding real world experiments.

4. Current Framework

Figure 1 presents the framework architecture. It’s general description was presented
in [Digiampietri et al. 2007]. The previous version of the framework had four main lim-
itations: only Web services were allowed as workflows activities; the automatic compo-
sition strategy did not used pre- and post-conditions; the execution of the workflows ac-
tivities’ was made sequentially using a third party workflow engine; the workflows could
not be exported as executable code. This paper highlights the new functionalities and the
implementation aspects of Planner, Editor, and Executor modules which overcome the
limitations presented in the previous version of the system.

The current version of the framework uses three types of basic activities: Web
Services, methods written in Java, and local applications. While the use of Web Service is
very important to guarantee interoperability and to make easier the distributed execution,
there are several problems and challenges when using only Web Services as the building
blocks of workflows. One is the need for converting all the applications used by the
researchers as Web Services. Obviously, it can be easily made by producing a container

[Interface]
A A A t Fy

Design

q—.‘ Editor Executor

Automatic Composer

v v Translator

Activity Activity/Workflor
Register Discovery

A F Y

[Data Manager]
1L
A

Cean——
e —— e e T e G R e —— Workflow
Structural Types Activity Ontology Data Transformation Repositor
Repository Catalog Repositor Rules

and Metadata

REPOSITORIES

Figure 1. Architecture

Web Service which goal is to invoke a local application, but, even then, it is an arduous
task when considering the dozens of applications daily used by the researchers.

In order to use third party Web Services in workflows system it is desirable that the
services are described semantically. Unfortunately, different groups use different domain
ontologies that are rarely compatible, thus, in order to use the semantic description of
these services, it is necessary to match different ontologies (typically in a semi-automatic
way) or to re-annotate the desired services. In this sense, Web Services are not as in-
teroperable as one should demand. Web Services also require the transmission of input
and output data throw the Web when the data and services are not in the same place.
Whenever there are a great volume of data, or a low transmission rate, or even the date is
confidential, the use or not of Web Services should be carefully considered.

In order to facilitate the use of the applications which the researchers already use,
the proposed framework has a special kind of activity to run local applications. The user
can easily register local applications as new workflows activities. In order to do this, the
user needs to provide the name of the application, the path of the executable file, and the
number and name of the parameters. Besides the regular inputs, two additional inputs are
automatically inserted in this kind of activity: the names of two output files, one to store
the standard output and other to store the error output (these two parameters are used as
the outputs of this kind of activity). When registering any new activity the user is asked
to annotate syntactically and semantically each activity’s inputs and outputs.

The last type of activity supported by the framework is methods written in Java.
There are three main goals of allowing this kind of activity. The first one was an empirical
observed need for simple specific activities for data conversion, extraction or even any
kind of simple processing required between some complex tasks. For example, after
a genome assembly it was necessary to identify some metrics to be used as input of a
genome annotation process. When using only Web Services, it was necessary to develop

a new Web Service to, for example, find a specific value inside one partial result file.
Regular Java methods are easier to develop and more efficient than Web Services. This
kind of activity is typically developed by a computer science specialist (undergraduate or
graduate student, or a researcher) and can be registered in the system in the same way
a Web Service or a local application. The unique difference is that, when registering
a Java method, the user must indicate the .class file and the name of the method to be
stored. The framework automatically extracts the interface information of the method
using Reflection' and the user is asked to annotate semantically each method’s inputs and
output. If the method’s interface is described using Annotation® then the framework will
extract this information automatically.

The second advantage of allowing Java methods is the possibility of using shared
memory in the execution of the workflows activities. Since the Executor Module was
developed in Java, the activities which use Java methods can use as input and output
references do objects in memory instead of copies of these objects.

The last main advantage of supporting Java methods as activities lays in the ex-
portation of the workflow source code. One of the functionalities of the framework is to
export the experiments as executable (or Java) code. Whenever all the activities of one
workflow are Java methods there is the possibility of exporting the workflow as pure Java
code (with no need of the exportation of the Workflow Engine module). The exported
code will be simpler, facilitating edition or re-execution. Whenever the workflow to be
exported contains Web Services, the resulting code imports the classes from the Work-
flow Engine in order to invoke the Web Services or call local applications. Even thus,
the exported workflow can be executed outside the proposed framework (facilitating the
sharing and reuse of scientific experiments).

The Compositor Modules uses SHOP2 [Nau et al. 2003] as planner. The use of
this planner has two main advantages: (i) SHOP2 is a very efficient hierarchical task net-
work planner able to work with large domains to produce the best or all the solution plans
according with a cost function; and (ii) it is able to do the automatic composition using
any kind of available data (syntactical, semantical or functional). The difference in the
kind of data used lays on the domain and problem definition (so it is transparent to the
planner). The framework produces the domain definition based on available data. Since
all activities (Web services, local applications or Java methods) have at least the syntacti-
cal information about their interfaces, this information is always translated to the planner.
Whenever there are semantic annotations of the interfaces, they are also used (allowing
the composition of more specific and, probably, more useful plans). If no semantical data
is provided, all inputs and outputs are annotated as belonging to the concept Thing, the
most general concept in the domain ontologies. Functional information, when available,
is translated as pre- and post-conditions to be used by the planner.

Even without any annotation of activities it is possible to take advantage of the
automatic composition module. For example, in the current version of the framework, a
user can use as input a list of Java classes and the system will convert each method to an
activity and produce a SHOP2 domain definition using only the syntactical information
obtained automatically from the classes. Thus, the user provides its input data and can

Thttp://java.sun.com/developer/technical Articles/ ALT/Reflection/
2http://docs.oracle.com/javase/1.5.0/docs/guide/language/annotations.html

request, as goal, the production of a set of data types or the execution of a given set of
methods and the planner will try to produce a plan able to satisfy the request. A plan
is an ordered set of tasks (activities) which execution achieves a given goal (solves the
requested problem).

The Editor Module is responsible for the register of new activities and the graph-
ical edition of workflows. Moreover, the Editor can receive a plan as input and convert it
to a workflow. It is possible that the same plan can be converted into different workflows
(since the plan is just an ordered set of activities). The implemented translation process,
first tries to match the input of the last activities with the outputs of the previous ones, and
then fill the unfilled activities’ inputs with the input data passed by the user. The resulting
workflow is presented to the user, so he/she can edit or ask for its execution.

The Executor Module is responsible for the execution of workflows. It supports
all three kinds of activities, executing each workflow activity in a new thread considering
data and control flows.

4.1. Basic Case Study

This section presents a simple case study in order to illustrate the translation from a plan
to a workflow, the exportation of the workflow as executable code, the graphical version
of the workflow and its execution.

As presented, a plan is an ordered set of tasks (activities) which execution achieves
a given goal. Given a plan composed of four activities: add, add, multiply, and print (in
this case, all activities are methods from a Java class). This plan can be imported with
or without a list of input parameters. The code of the Plan Importation algorithm can be
seen in the supplementary material®>. Whenever the list of input parameters is not empty,
the algorithm uses this information as input of the workflow activities. The list of input
parameters is passed as a list of pairs: <data type, value>. In this case study, the list
of input parameters has four elements: four data of type double and which values are,
respectively, 2, 3, 7 and 9.

The graphical view of the resulting workflow is presented in Figure 2. Each
task/activity is represented by a rectangle. The inputs and outputs of each activity are
represented by small rectangles in the left (inputs) and right (outputs) sides of each ac-
tivity. The data flows are represented by black arrows linking an output to an input. In
this workflow, the two add activities (the activities in the left side of the workflow) will
be executed concurrently. The execution of this workflow produces the value 80.0, cor-
responding to the result of the following operations: (2+3)*(7+9). The workflow from
Figure 2 can also be automatically exported as an executed code®*.

The example used in Figure 2 does not have any explicit control flow (only data
flows). Figure 3 presents the workflow from Figure 2 with one additional control flow.
Control flows are gray arrows which link one activity with other, meaning that the execu-
tion of one activity can start only after the execution of the other activity (regardless the
absence of data flows). A more complex workflow, composed of three methods written in
Java and two web Services can be seen in the supplementary material.

3http://www.each.usp.br/digiampietri/bresci2014/code1.png
“http://www.each.usp.br/digiampietri/bresci2014/code2.png
Shttp://www.each.usp.br/digiampietri/bresci2014/code3.png

] Workflow Manager BT

File Edit Register Database WorkFlow Format Help .WOTKHOW#z ul d E
Blolmalale) |4 |53 _ Bl & b6 % Sx +~ b BB @e- @
5 Workfiow #1 =@ K
el (wa] [n]e[x]a]x] [~]>] [o]m[m]e]-~]~] == +Boda [
Figure 2. Study case workflow Figure 3. Workflow with a control flow

4.2. Achievements

Besides the toy examples used to validate or evaluate the framework, the current version
of the framework is being successfully used in two real cases.

The first was managing scientific experiments to facilitate the use of non-technical
users. The framework was used by biochemical users in order to analyze morphological
characteristics of Drosophila embryos to evaluate the effects of the expressions of some
genes in the formation of the anterior regions of the embryos [Andrioli et al. 2012].

In the second experiment, the framework was used as the basis for the develop-
ment of a configurable and extensible environment for the management of sign language
processing experiments [Digiampietri et al. 2012], and a set of specific workflow activi-
ties was developed including image segmentation and classification methods.

4.3. Lessons Learned

Web Services are a very useful and powerful technology, but using only this kind of ac-
tivity can waste available applications and/or restrict the number of the framework users.

The automatic composition mechanisms can help users to obtain a composed
workflow that achieves a given goal, but the majority of the scientists knows what tools
they want to use, thus, semi-automatic construction of workflows may be more useful
than the automatic one. For this reason, incorporate recommender approaches seems to
be a logical evolution of the framework.

The planner and the recommender systems are as good as the workflows and activ-
ities database/catalog. Without a well-structured and well annotated set of activities and
workflows none of these approaches will produce good results. Actually, it is very hard to
find good workflows or semantic web services repositories. One of the biggest workflows
open repository is MyExperiment® and it has only few hundred workflows (which are not
semantically annotated).

4.4. Challenges
There are three main challenges that we started to face.

e The first is to build the framework as a set of loosely coupled module, so the
modules can be easily replaced or be incorporated in other solutions. In order to
do this, the interfaces of all modules are being formally specified.

e The second challenge regards usability. To facilitate the use of the framework, es-
pecially for non-technical users, it is necessary to improve the graphical interface
and to develop more complex fault tolerance mechanisms.

Swww.myexperiment.org/

e The third challenge is to combine automatic composition and recommender tech-
niques, considering small datasets of workflows and annotated activities. More
than only developing approaches which combine these techniques, it is very im-
portant to develop tools to facilitate activities and workflows annotation and shar-
ing to incentive users to increase the repositories with high quality annotated ac-
tivities/services and workflows.

5. Related Work

Some of the most used SWMS are Kepler [Altintasetal. 2004], Tri-
ana [Taylor et al. 2005] and VisTrails [Callahan et al. 2006]. A detailed review
of the SWMS describing capabilities, limitation, and challenges can be seen
in [Curcin and Ghanem 2008, Deelman et al. 2009, Lu and Zhang 2009].

The work presented in this paper differs from related work for allowing the easy
combination, sharing and execution of basic activities that researchers already use in its
local experiments. Moreover, it supports the combination of local applications, methods
developed in Java and Web services, allowing the sharing of experiments as workflows or
executable code (which does not require the installation or use of a SWMS). The planner
used is an hierarchical planner which take advantage of syntactical, semantical, pre- and
post-conditions information in order to automatically produce workflows.

6. Conclusions and Future Work

This paper presented the new functionalities of a scientific workflow management sys-
tem which first version was developed 15 years ago. These new functionalities aims to
facilitate the composition and execution process, combining the interoperability of Web
Services with the traditional local applications and the methods developed in Java.

Moreover, the process of extracting information from activities was partially au-
tomated, so the user is asked only to complement the activities information (for example,
annotating semantically the activities interfaces). The resulting plans produced by the
planner are automatically converted to workflows which can be edited, executed or ex-
ported as executable code.

As future work, we intend to develop recommender techniques to help the user
in the manual construction of workflows. Moreover, the graphical user interface will be
improved to facilitate the management of workflows and the register of new activities.

Acknowledgments
The work presented in this paper was supported by FAPESP, CAPES and by CNPq.

References

Altintas, 1., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., and Mock, S. (2004). Ke-
pler: An extensible system for design and execution of scientific workflows. In SS-
DBM’04, pages 423-424.

Andrioli, L. P., Digiampietri, L. A., de Barros, L. P., and Machado-Lima, A. (2012).
Huckebein is part of a combinatorial repression code in the anterior blastoderm. De-
velopmental Biology, 361(1):177 — 185.

Barga, R. S. and Digiampietri, L. A. (2008). Automatic capture and efficient storage of
escience experiment provenance. CCPE, 20(5):419-429.

Callahan, S. P, Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T.,, and Vo, H. T.
(2006). Managing the evolution of dataflows with vistrails. In Proceedings of the 22nd
International Conference on Data Engineering Workshops, ICDEW ’06, page 71.

Curcin, V. and Ghanem, M. (2008). Scientific workflow systems - can one size fit all? In
Biomedical Engineering Conference, 2008 - CIBEC2008, pages 1-9.

Deelman, E., Gannon, D., Shields, M., and Taylor, I. (2009). Workflows and e-science:
An overview of workflow system features and capabilities. Future Gener. Comput.
Syst., 25(5):528-540.

Digiampietri, L., Teodoro, B., Santiago, C., Oliveira, G., and Aradjo, J. (2012). Um
sistema de informacao extensivel para o reconhecimento automatico de libras. In SBSI
2012 - Trilhas Técnicas (Technical Tracks).

Digiampietri, L. A., ARAUJO, J. C., OSTROSKI, E. H., Santiago, C. R. N., and Perez-
Alcazar, J. J. (2013). Combinando workflows e semantica para facilitar o reuso de
software. Revista de Informdtica Teorica e Aplicada: RITA, 20:73-89.

Digiampietri, L. A., de Jests Pérez Alcézar, J., and Medeiros, C. B. (2007). An ontology-
based framework for bioinformatics workflows. I/JBRA, 3(3):268-285.

Digiampietri, L. A., Pérez-Alcézar, J. J., e Freitas, R. S., Araujo, J. C., EricH. Ostroski,
and Santiago, C. R. N. (2011). Uso de planejamento em inteligéncia artificial para o
desenvolvimento automético de software. In AutoSoft 2011.

Lu, S. and Zhang, J. (2009). Collaborative scientific workflows. In Web Services, 2009.
ICWS 2009. IEEE International Conference on, pages 527-534.

Medeiros, C., Perez-Alcazar, J., Digiampietri, L., Pastorello, G., Santanche, A., Torres,
R., Madeira, E., and Bacarin, E. (2005). WOODSS and the Web: Annotating and
Reusing Scientific Workflows. ACM SIGMOD Record, 34(3):18-23.

Nau, D., Au, T., llghami, O., Kuter, U., Murdock, W., Wu, D., and Yaman, F. (2003).
SHOP2: An HTN planning system. Journal of Artificial Intelligence Research, pages
379-404.

Oh, S.-C., Lee, D., and Kumara, S. R. T. (2007). Web service planner (wspr): An effective
and scalable web service composition algorithm. IJWSR, 4(1):1-22.

Seffino, L., Medeiros, C., Rocha, J., and Yi, B. (1999). WOODSS - A Spatial Decision
Support System based on Workflows. Decision Support Systems, 27(1-2):105-123.

Shin, D., Lee, K., and Suda, T. (2009). Automated generation of composite web services
based on functional semantics. Web Semantics: Science, Services and Agents on the
World Wide Web, 7(4):332-343.

Taylor, 1., Shields, M., Wang, 1., and Harrison, A. (2005). Visual grid workflow in triana.
Journal of Grid Computing, 3(3-4):153-169.

Zuiiiga, J. C., Pérez-Alcézar, J. J., Digiampietri, L. A., and Barbin, S. E. (2014). A
loosely coupled architecture for automatic composition of web services applications.
International Journal of Metadata, Semantics and Ontologies, 9(3):241-251.

