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Abstract — Principal Component Analysis (PCA) is a well known statistimethod that has successfully been applied for
reducing data dimensionality. Focusing on a neural netwunikh approximates the results obtained by classical PG&\rtain
contribution of this work consists in introducing a parhlieodeling for such network. A comparative study shows that t
proposal presents promising results when a multi-core coenps available.
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1 INTRODUCTION

In pattern recognition problems, dimension reductionéstiocess of decreasing the number of variables under aasioh,
and it can be divided into feature selection and featureaetibn methods. Feature selection approaches try to finghtamal
subset of the original variables by eliminating featurethviittle or no predictive information. On the other handatigre
extraction techniques map the original multidimensionzdce into a space of reduced dimensionality. This meansthkat
original feature space is transformed by applying, foransg, a linear transformation.

One of the most commonly used linear technique for dimeradiigrreduction is the Principal Component Analysis (PCA),
which transforms the data in such a way that the variancesihoiver-dimensional representation is maximized. In thssital
statistical approach for performing PCA, the data cori@amatrix is constructed and its eigenvectors are compuiHte
eigenvectors corresponding to the largest eigenvaluesp(tincipal components) can be used as the basis of the dramed
subspace [1,2] . Alternatively, neural network models daa find the principal components for a problem by simply cating
much less complicated operations, such sums and multipicsathroughout an iterative process.

Dimension reduction techniques are intensely requirechagie processing applications since the typical high dileasty
of this kind of data restricts the choice of image processieghods. Besides reducing the number of features to be gsede
PCA can lead to the additional benefit of removing noise fromdata, as such noise are usually concentrated in the extlud
dimensions [3]. Although PCA is the best linear method (iramequare sense) to project the data into a lower-dimeaision
subspace, it can be quite expensive to compute, dependitigg@mage resolution and number of images to be processed [4]

The aim of this paper is to present an efficient parallel PC&ralenetwork approach, to run in multi-core computers, for
feature extraction. The proposed approach can be seen aseasien of the adaptive neural model developed by Rubngr an
Tavan [5].

The main motivation of our work is to take advantage of theypaization of multi-core personal computers and workstest.
The proposed model was evaluated with experimental stadieés performance was compared, in terms of quality ofdhei-
dimensional images and computational cost, with the sd@létCA neural network and the traditional PCA, executedhsy
Minitab Statistical Softwaré?’ .

The remain of this paper is organized as follows. Sectiors@udises some recent approaches also developed in attghoptin
reduce PCA computational cost. The fundamentals of clalsstatistical PCA are briefly presented in Section 3. Sadtigives
the architecture and algorithm for sequential and parBI&A neural network. In Section 5, the experimental restiltsis work
are discussed. Finally, Section 6 presents the conclusioth$uture work.

2 RELATED WORK

Bingham and Mannila [4] compared different methods for imdgta dimensionality reduction using the criteria of ant@din
distortion caused by each method and its computational Tbsty showed that the Random Projection (RP) technique mlates
distort the data significantly more than PCA and, for low cossgion rates, RP and PCA give better results than thoseqedd
by Discrete Cosine Transform (DCT). They also measureduhaer of float point operations needed when using RP, PCA and
DCT in dimensionality reduction, concluding that PCA isrsfggcantly more burdensome than RP or DCT.

Aiming to overcome the drawbacks in traditional PCA, Ye et[&] have proposed a dimensionality reduction schemegdall
Generalized PCA (GPCA), which works directly with imageghirir native state, as two-dimensional matrices. Suchrsehe
has been tested in experiments on databases of face imageshowed that GPCA is superior to PCA in terms of qualityhef t
compressed images, query precision, and computation@al cos

Several parallel implementations of traditional PCA haeerbintroduced by Yang et al. [6], who have investigated such
proposals considering time speed and resulting compreggdormance. They have showed that parallel implememtsiti
using an eigenspace merging approach have lower speedmarfce than other based on covariance matrix merging.
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Figure 1: Sequential PCA Neural Network Architecture

3 PRINCIPAL COMPONENT ANALYSIS (PCA)

Essentially, the classical PCA aims to solve an eigenvaiaklem:

Craj = Aja;, forj=1,2,...p (1)

where C,, is the original data covariance matriX, is an eigenvalue o', anda; is the eigenvector corresponding to the
eigenvalue);. Next, the calculated eigenvalues can be increasinglyredde

A > Ao > > A 2
The principal components can, then, be computed accorditigetequation:
Zj=a; X = X"a;, forj=1,2,..p (3)

whereZ; is thej-th principal component and’ represents the original data set.
An important property of PCA is that the variances of primtipomponents are the eigenvalues of mafrix Therefore,
dimensionality reduction can be obtained by performing R@A by keeping only the components with highest variance.

4 PCA NEURAL NETWORKS

The Sequential Adaptive PCA Neural Network [5] uses an unsupervised learning process that is basedriatioas of
the Hebbian learning rule. Its architecture, shown in Fégly consists op input andm output units, organized in such way
that the output unit is connected to the output unitwith connection strength;;, if and only if i < j. For this model, it has
been proved that the synaptic weight veaigrconverges to thg-th eigenvector of the data covariance matrix, considering an
ordering scheme by decreasing eigenvalues.

The outputy; (n) of neuronj at timen produced in response to the set of inputsfor i = 1,2, ..., p, is given by [7]:

yj(n) =Y wij(n)zi(n) + Y urjyr(n). (4)
=1 k=1

The synaptic weights);; between the input and output layers are updated in acccedaribe Hebbian learning rule, that is,

Aw;j(n + 1) = nry; + BAwg;(n),

fori=1,2,...,pandj=1,2,....m, ®)

wheren is a learning constant angl is themomentunterm. The lateral synaptic weights are adjusted accordirthe anti-
Hebbian learning rule:
Augj(n +1) = pyryj + BAug;(n),

fork<jandj=1,2,...m, ©)

wherey is another positive learning parameter.

It has been proved that the internal weights of a neyronthe sequential PCA neural network will only converge iaéti
the internal weights associated to the 1 neurons have already reached convergence [8]. Therefisgassible to develop a
Parallel PCA Neural Network focusing on each neuron in an individual manner, while prasg the interdependence among
them.

For constructing these individualized schemes, one canmndease the sequential PCA neural network architecture into
smaller structures, each of them oriented by one outputomeurhis idea is illustrated in Figure 2 for the first neurotjaet
finds the basis for the first principal component of the datsis Tieuron has to be considered in a special way, since ttheis
only one that does not receive any influence from the othdteinutput layer, but that contributes for all the other atitpsults.

The second individualized structure is oriented by the oeuelated to finding the second principal component, astithted
in Figure 3. It can be seen that this neuron is partially ddpahfrom the previous one and, thus, it is expected thahiteges
after the previous structure has been converged.
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Figure 2: Individualized scheme for the first output neuron

Figure 3: Individualized scheme for the second output neuro

Figure 4: Individualized scheme for theth output neuron
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Generalizing the idea, the individualized structure fa thth neuron can be stated as seen in Figure 4.

For modeling the PCA neural network in a parallel fashiore oould now simply consider each individualized sub-nekwor
as running in a different thread. In this case, each threaddywrovide the computation for the basis of one principahponent.
However, since there is a partial interdependence amongii®ns running in different threads, it turns out to be eddte use
of synchronization mechanisms in order to guarantee th@firg restrictions: {) that a neurory does not finish its processing
before all thej — 1 neurons has been done; (ii) that a neujaioes not begin running before all thie- 1 neurons has been
started. The synchronization among the threads were dang ssmaphores.

5 EXPERIMENTAL RESULTS

The tests were realized in an Intel Core 2 computer with 2.006BAM and Ubuntu 9.10 operation system. The input data
was composed of 20 images randomly chosen from the Micr&ssfearch Cambridge Object Recognition Image Database [9].
The original size of the images was 640x480 pixels, but,Hr tase study, they were reduced to 160x120 pixels to dyrthk
computation.

The preprocessing task involved the arbitrary choice ohtlmaber of eigenvectors and the division of the image in petch
corresponding to the selected value. This number repreanhumber of neurons of the neural network. For the testepted
here, the number of eigenvectors was set to 10 and each inggdivided in 1920 blocks of 10 pixels, producing a matrixwit
1920 rows and 10 columns. This matrix was normalized and egltin the matrix had its value decreased by the averageeof th
matrix values.

The experiments run over two different implementations: dequential and the parallel. For each image, both implemen
tions were executed using as parameters the following nuaflagcles: from 500 to 5,000 ranging from 500 and from 10,800
50,000 ranging from 5,000 cycles. For each execution wedtthre eigenvectors, the principal components, the exettithe,
and the Mean Square Error (MSE) calculated comparing thgnadiimage with the image reconstructed using the prifcipa
components. The following analyses will consider the ayer@sults of the 20 images used in this case study.

Figures 5 and 6 presents the MSE versus the number of cyaesimshe training of the neural network. Each image was
reconstructed using only 7 principal components and the s calculated comparing the reconstructed image aratitjiaal
one. Itis important to observe that the parallel implemtmtaconverges quicker than the sequential. The numberaésyn
the training range from 500 to 5,000 and from 5,000 to 50,3@es.

Mean Square Error using 7 Principal Components
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Figure 5: Mean Square Error using 7 principal components

As described in the literature [7, 8], the neural networkdalculating PCA will converge when trained with enough nemb
of cycles. To illustrate that, we compared the MSE of the anégnted neural networks (sequential and our parallel gaipo
with the results produced by MinitdB! Statistical Software. Figure 7 presents this comparisdme fieural networks were
trained with 50,000 cycles. As expected, the three teclsigonverged for the same results.

The execution time in milliseconds of the sequential anélpelrapproaches is showed in Table 1. The last column of the
table present the relation between the time spent in thél@laapproach and the time spent in the sequential one.

Figure 8 presents the reconstruction of one of the 20 imaged in this case study. The reconstruction used from 1 to 10
principal components produced by the parallel algorithantd with 50,000 cycles. The legend of each image contams t
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Mean Square Error using 9 Principal Components
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Figure 6: Mean Square Error using 7 principal components
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Figure 7: Mean Square Error: comparison with Minftab

number of components used in the reconstruction and the I8gaare Error of the reconstruction when compared with the
original image.

The tests presented in this section were realized in a dualamomputer, and show that the parallel algorithm run intleea
73% of the execution time of the sequential one, and, for éimeesamount of training cycles, the parallel approach ptedem
smaller MSE than the sequential one. It occurs because pattadlel approach running usingcores, the neuropwill start to
execute only when neurgih— x finishs to execute. So, it will start its learning processigsionverged data from the neurans
to 7 — x. In contrast, in the sequential approach, all neurons araileg at the same time using data from the previous neurons
which hasn't converged yet.

6. CONCLUSION AND FUTURE WORK

This article presented the proposal of a parallel PCA newgdlork, which is based on an extension of the adaptive heura
model developed by Rubner and Tavan [5]. A comparative stlimbussed the results obtained by such approach in coraparis
to those obtained by the sequential PCA neural network amlihitab statistical software.

The experimental results showed that the parallel netwankfaster than its sequential version and, for the same nuaibe
training cycles, it presented smaller MSE values than tposeided by the traditional one.

As future work, experiments should be carried out in computéth different numbers of cores in order to verify the seal
bility of the proposed approach.
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# of cycles| Sequential| Parallel| Parallel/Sequentia
10000 124216 | 89618 72.1%
20000 247179 | 178700 72.3%
30000 370528 | 267741 72.3%
40000 494159 | 358797 72.6%
50000 619018 | 448456 72.4%

Table 1: Execution Time in Milliseconds

{6) MSE: 0.03326709 (7) MSE: 0,0202354 1 (@) MSE: 0.010177275 {9 MSE: 0.003652513 (10) M5E: 1,87455E-05

Figure 8: Reconstruction of one image using from 1 to 10 ByadcComponents
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