Programa de Pós-Graduação em
Modelagem de Sistemas Complexos

SÃO PAULO
2008
SUMÁRIO

1. Identificação da Proposta ... 4
 1.1. Identificação do Programa de Pós-Graduação 4
 1.2. Identificação da Instituição.. 4
 1.3. Identificação do Coordenador... 4

2. Proposta do Programa .. 5
 2.1. Caracterização do Programa .. 5
 2.2. Histórico Institucional... 7
 2.3. Caracterização da Área de Conhecimento 8
 2.3.1. Área de Concentração... 11
 2.3.2. Linhas de Pesquisa... 11
 2.4. Estrutura Curricular ... 12
 2.4.1. Características do Programa de Pós-Graduação em Modelagem de Sistemas Complexos – Nível de Mestrado Acadêmico 12
 2.4.2. Quadro Resumo das Disciplinas por Área de Concentração 13
 2.4.3. Fichas das Disciplinas do Programa de Pós-Graduação em Modelagem de Sistemas Complexos .. 14
 2.5. Infra-Estrutura para Ensino, Pesquisa e Extensão 39
 2.6. Atividades Inovadoras e Diferenciadas de Informação e Gestão 42

3. Corpo Docente .. 43
 3.1. Caracterização do Corpo Docente .. 43
 3.1.1. Relação do Corpo Docente do Programa por Área de Concentração 44
 3.1.2. Formação e Titulação do Corpo Docente no Programa de Pós-Graduação de Modelagem de Sistemas Complexos .. 45
 3.1.3. Experiência Didática dos Participantes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos(*) .. 48
 3.1.4. Experiência em Orientação dos Participantes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos(*) 51
 3.1.5. Bolsas Obtidas pelos Docentes Participantes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos no Triênio 2006-2008 52
 3.1.6. Quadro de Docentes do Programa .. 54
 3.1.7. Quadro de Orientadores do Programa .. 55
 3.2. Atividade Docente ... 56
 3.2.1. Quadro Resumo das Disciplinas do Programa 57
 3.3. Participação Docente em Pesquisa e Desenvolvimento de Projetos 58
 3.3.1. Projetos de Pesquisa em Andamento dos Docentes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos .. 58
 3.3.2. Financiamentos e Auxílios à Pesquisa Vigentes 63

4. Corpo Discente .. 64
4.1. Perfil do Ingressante .. 64
4.2. Perfil do Egresso ... 64
5. Produção Intelectual.. 66
 5.1. Publicações qualificadas dos docentes permanentes do programa 66
 5.1.1. Produção Completa dos Docentes Permanentes do Programa de Pós-
 Graduação de Modelagem de Sistemas Complexos no Triênio 2006-2008 67
 5.1.2. Qualificação da Produção Intelectual dos Docentes Permanentes do
 Programa de Pós-Graduação de Modelagem de Sistemas Complexos no
 Triênio 2006-2008 68
 5.1.3. Pontuação de Credenciamento pela Produção Intelectual dos Docentes
 Permanentes do Programa de Pós-Graduação de Modelagem de Sistemas
 Complexos no Triênio 2006-2008 .. 69
 5.2. Participação em Revisões de Periódicos .. 69
6. Inserção Social .. 71
 6.1. Inserção e Impacto no Contexto Regional e Internacional .. 71
 6.2. Integração e Cooperação com Outros Programas 73
 6.2.1. Parcerias .. 73
 6.2.2. Cooperação e Intercâmbio Internacional... 73
 6.3. Visibilidade e Transparência das Atividades do Programa de Pós-Graduação 74
7. Anexos .. 76
 Anexo I - Exemplos de Temas de Dissertação em Modelagem de Sistemas Complexos 77
 Anexo II - Regulamento do Programa de Pós-Graduação em Modelagem de Sistemas
 Complexos ... 80
 Anexo III - Currículos Lattes dos Docentes Orientadores do Programa de Pós-Graduação
 em Modelagem de Sistemas Complexos ... 88
1. Identificação da Proposta

1.1. Identificação do Programa de Pós-Graduação

Nome: Modelagem de Sistemas Complexos
Área: Interdisciplinar
Comitês Relacionados:
CT I - Meio Ambiente & Agrárias
CT II - Sociais & Humanidades
CT III - Engenharia, Tecnologia e Gestão

Nível: Mestrado acadêmico

1.2. Identificação da Instituição

Nome: Escola de Artes, Ciências e Humanidade (EACH)
Universidade de São Paulo
Endereço: Arlindo Bettio, 1000
Bairro: Ermelino Matarazzo
Cidade: São Paulo-SP
CEP: 03828-000
E-mail: grife@usp.br
Telefone: (11) 3013-3482

1.3. Identificação do Coordenador

Nome: André Cavalcanti Rocha Martins
CPF: 152.444.798-65
Telefon: (11) 3091-1008
E-mail: amartins@usp.br
2. Proposta do Programa

A proposta de programa de pós-graduação em Modelagem de Sistemas Complexos caracteriza-se como proposta nova de curso de pós-graduação em projeto, a ser apresentada pela primeira vez à CAPES. Embora seja uma proposta sem vínculo a um curso de graduação específico na área, dada a inserção em área interdisciplinar, apresenta afinidade com cursos de graduação em diferentes áreas do conhecimento, tais como Física, Economia, Biologia, Administração, entre outras.

É importante ressaltar que o programa de pós-graduação em Modelagem de Sistemas Complexos, embora atualmente destine-se à formação em nível de Mestrado, deve ser expandido para formação em nível de Doutorado após um prazo estimado de três anos decorridos do início das atividades do Mestrado Acadêmico. A expansão será possível a partir da formação do primeiro grupo de alunos, expansão do número de docentes credenciados em bases sólidas – e, portanto, a partir da inserção em projetos de pesquisa – e maior número de docentes com experiência de orientação em nível de mestrado.

O corpo docente do programa buscou construir uma proposta pautada em coerência e coesão a partir de bases sólidas, provenientes de sua própria formação acadêmica e experiência no ensino e pesquisa interdisciplinar, postergando propositalmente o início do programa de Doutorado para garantir a qualidade da formação de seus egressos em uma área do conhecimento inovadora ainda em consolidação no país.

2.1. Caracterização do Programa

A proposta de criação de um programa de pós-graduação em Modelagem de Sistemas Complexos na Escola de Artes, Ciências e Humanidades da Universidade de São Paulo (EACH-USP) surgiu a partir da interação bem sucedida em projetos de pesquisa entre docentes com formação em Administração, Ciências Biológicas, Economia, Gestão Ambiental e Física.

O elo principal da interação entre docentes de áreas aparentemente tão distintas decorre do uso de um conjunto de conceitos, instrumentos e modelos, originalmente estudados na Física Estatística\(^1\), e desenvolvidos durante as últimas décadas nas interfaces com as Ciências Biológicas\(^2,3\) e Ciências Sociais Aplicadas\(^4,5,6\). Tal abordagem, usualmente denominada Sistemas Complexos, tem

demonstrado potencial para avanços significativos, tanto em termos científicos e técnicos, quanto em relação ao estudo de problemas que transcendem áreas do conhecimento consolidadas.

O programa proposto é conceitualmente interdisciplinar. Cabe observar, no entanto, que uma nova disciplina emerge da utilização produtiva de uma linguagem comum por certo grupo de indivíduos durante algum tempo. Assim, qualquer disciplina se origina de uma etapa interdisciplinar com a formulação ou descoberta de repertórios teóricos e instrumentais comuns, repertório que, no caso, é denominado de Sistemas Complexos.

O curso de pós-graduação proposto apresenta dois núcleos de conhecimento considerados essenciais. Em primeiro lugar, a modelagem computacional e o estudo dos fundamentos dos sistemas complexos. Em segundo, o desenvolvimento de aplicações de tais idéias e métodos ao estudo de sistemas complexos, tanto socioeconômicos, quanto biológicos ou resultantes da interação entre ambos.

As técnicas de modelagem poderão ser empregadas pelos alunos de duas formas principais. Por um lado, poderão ser utilizadas na construção de modelos teóricos ou desenvolvimento de conceitos e analogias para investigação e consolidação de novas vertentes do conhecimento científico. Por outro lado, poderão ser adotadas para construção de modelos e ferramentas aplicadas a diferentes áreas do conhecimento ou da prática pública e privada.

A convergência de interesses pela realização de projetos de pesquisa colaborativos que conjugam áreas de conhecimento como Economia Aplicada, Administração, Biologia, Física Estatística e Simulações Baseadas em Agentes contribuiu decisivamente para a composição de um grupo de pesquisa interdisciplinar, Grupo Interdisciplinar de Física da Informação e Economia (GRIFE), cujos principais objetivos são:

- Empregar técnicas e modelos da Física Estatística para o estudo de fenômenos relacionados ao processamento de informação, tais como complexidade computacional, comunicação de dados, dinâmica evolucionária, ecologia informacional e alocação de recursos;

- Estudar propriedades emergentes em sistemas complexos biológicos, socioeconômicos ou da interação entre estes (por exemplo, sistemas sócio-ecológicos), utilizando técnicas computacionais de simulação; e

- Desenvolver aplicações dos estudos descritos para a gestão e as políticas públicas.

O êxito obtido pelo grupo de pesquisa na realização de atividades de pesquisa interdisciplinar e prolífica publicação de artigos em periódicos de alto impacto, aliado à escassez de programas de pós-graduação interdisciplinares com foco nas linhas de pesquisa propostas, constituiu incentivo à proposição do presente programa de pós-graduação. O intuito da proposta de pós-graduação em
Modelagem de Sistemas Complexos é consolidar no país uma área de conhecimento inovadora pela formação de pesquisadores de alta qualificação e ampliação da produção acadêmica na nova área em construção.

A questão central do programa de pós-graduação proposto reside na busca pela inovação na abordagem de questões tradicionais em Ciências Sociais Aplicadas e Sistemas Biológicos, por meio do uso de analogias precisas e métodos ou instrumentos quantitativos emergentes na interface da Física com tais áreas.

2.2. Histórico Institucional

O governo do Estado de São Paulo, a partir da iniciativa do Conselho de Reitores das Universidades Estaduais Paulistas (CRUESP), criou um programa específico de expansão da oferta de vagas no ensino superior público paulista a partir do ano de 2001. Consequentemente, a Reitoria da Universidade de São Paulo constituiu, em 2002, um grupo de trabalho incumbido de avaliar a possibilidade de implantação de uma nova unidade de ensino na cidade de São Paulo, particularmente focalizando a zona leste do município, região caracterizada por alta densidade populacional, forte mobilização social e significativa necessidade de serviços públicos especializados.

Após diversas discussões entre representantes da Universidade de São Paulo e organizações comunitárias da zona leste, o relatório final do grupo de trabalho recomendou enfaticamente a concretização do projeto de criação de um novo espaço universitário da Universidade de São Paulo na localidade. O relatório destacava a excelente oportunidade para ampliação do acesso da população à reconhecida excelência em ensino, pesquisa e extensão da Universidade de São Paulo.

A Escola de Artes, Ciências e Humanidades (EACH-USP) constitui, a partir de sua criação no ano de 2005, a mais nova unidade da Universidade de São Paulo. Apresenta como missão a inovação e a excelência acadêmica em ensino, pesquisa e extensão, mantendo simultaneamente a tradição da Universidade de São Paulo. Atualmente, a unidade apresenta dez cursos de graduação: Ciências da Atividade Física, Gerontologia, Gestão Ambiental, Gestão de Políticas Públicas, Lazer e Turismo, Licenciatura em Ciências da Natureza, Marketing, Obstetrícia, Sistemas de Informação e Têxtil e Moda.
Os cursos são pautados pela interdisciplinaridade, tendo sido implantados em sintonia com exigências socioeconômicas do país, em geral, e mercado de trabalho, em particular. Em linhas gerais, são graduações que contêm campos do conhecimento emergentes e carreiras promissoras no século XXI.

A infra-estrutura da unidade inclui, entre outras instalações, modernas salas de aula com equipamentos audiovisuais, anfiteatros, biblioteca central, laboratórios de informática, centro poliesportivo, refeitório e estação de trem (linha F – Leste, integrada ao metrô Brás e Tatuapé).

Os novos cursos de graduação são ministrados desde 2005, tendo sido criados pelo Conselho Universitário da Universidade de São Paulo e reconhecidos pelo Conselho Estadual de Educação. O ingresso nos cursos de graduação, tal como nos demais cursos de graduação da Universidade de São Paulo, é realizado pelo vestibular da FUVEST.

A unidade caracteriza-se, ainda, pela ausência de departamentos desde sua criação, característica que resultou em inovação no que se refere à convivência entre docentes e discentes com formações e interesses variados. Como conseqüência, geraram-se iniciativas em prol da formação de grupos de pesquisa que congregam pesquisadores das mais diversas áreas do conhecimento para o desenvolvimento de linhas de pesquisa inovadoras.

O ambiente de ampla integração interdisciplinar da EACH-USP resultou na criação do Grupo Interdisciplinar de Física da Informação e Economia (GRIFE) no ano de 2006, a partir da interação entre docentes dos diferentes cursos da escola. A concepção do programa de pós-graduação em Modelagem de Sistemas Complexos objetiva a formação de pesquisadores versados na linguagem típica da interface entre Física, Ciências Biológicas ou Ambientais e Ciências Sociais Aplicadas, que sejam capazes de realizar a exploração direta de novas técnicas e analogias pertencentes a um campo de conhecimento inovador de ampla inserção internacional.

2.3. Caracterização da Área de Conhecimento

A área de concentração interdisciplinar em Sistemas Complexos, assim como as respectivas linhas de pesquisa em Fundamentos de Sistemas Complexos e Ciências Sociais e Ambientais Aplicadas, apresenta coerência e consistência em relação à produção acadêmica e projetos de pesquisa atualmente em desenvolvimento pelos docentes que compõem o programa.

A criação e consolidação de uma área de concentração de ampla abrangência em Sistemas Complexos constitui uma proposta inovadora no país, apresentando aderência e atualização em relação às pesquisas que vêm sendo desenvolvidas nos principais centros de pesquisa internacionais (vide Seção 6.1).
Em diversos centros internacionais tem havido, nos últimos dez anos, interesse crescente na modelagem e simulação de sistemas sociais, econômicos e socioambientais (ou socionaturais), cujo interesse nasce em particular de dois fatores interrelacionados. Em primeiro lugar, nasce do interesse crescente em várias áreas do conhecimento na ciência da complexidade, que promove uma visão de mundo em que os fenômenos agregados emergem da interação entre agentes físicos, biológicos, sociais ou econômicos, os quais raramente estão em equilíbrio. Tal visão, portanto, destaca-se das premissas adotadas até então por vários modelos teóricos nas diferentes áreas do conhecimento de sistemas em equilíbrio. Em segundo lugar, nasce do fato que a complexidade de interação entre agentes frequentemente resulta em padrões não-lineares, que dificultam o estudo do comportamento por técnicas tradicionais de análise estatística.

Embora não exista uma definição ampla consensual, Sistemas Complexos são identificáveis por exibir comportamentos que têm sido sistematicamente enumerados pela literatura nos últimos vinte anos, detalhados na lista não-exaustiva apresentada a seguir: emergência, transições de fase, universalidade, adaptabilidade, auto-referência, auto-organização, imprevisibilidade, padrões de interação com regularidades não-triviais, causas múltiplas com efeitos não-lineares e invariância em escala.

1. **Emergência**: Um fenômeno é emergente quando surge como resultado da interação dos elementos constituintes do sistema e não pode ser descrito somente em função das características isoladas de tais constituintes. O estado de agregação de moléculas de água, por exemplo, é uma propriedade emergente: uma molécula de água não pode ser definida como sólida, líquida ou gasosa, pois são propriedades que podem caracterizar somente agregados de moléculas de água, dada a interação. O sistema de preços de uma economia constitui outro fenômeno emergente, pois é resultado da interação entre agentes de mercado. Da mesma maneira, uma comunidade com suas instituições, língua e cultura é um fenômeno emergente, sendo resultado da interação de indivíduos e grupos de indivíduos.

2. **Transições de fase**: Mudanças nas estatísticas de um sistema, dadas mudanças em parâmetros de controle, são denominadas transições de fase, que podem ser contínuas ou descontínuas. Assim, por exemplo, as propriedades coletivas (estatísticas) da água mudam abruptamente de acordo com temperatura e pressão. Outro exemplo é a mudança observável em estatísticas de violência de acordo com parâmetros controláveis por meio de políticas públicas.

3. **Universalidade**: Detalhes do comportamento dos constituintes de um Sistema Complexo frequentemente não são importantes para o comportamento agregado (médio). A densidade de gases diferentes, por exemplo, como oxigênio, metano, argônio, néonio e monóxido de carbono, variam; exceto por fatores de escala, de forma idêntica com a temperatura. O mesmo ocorre com a distribuição de alturas, pesos e pressão arterial em uma população, ou a distribuição de votos entre
candidatos em eleições. Observa-se, também, que a distribuição de tamanhos de firmas ou flutuações no mercado financeiro possuem um padrão comum, que pode ser, então, considerado universal.

4. **Adaptatividade**: A capacidade de modificar o próprio comportamento de acordo com mudanças no ambiente é uma característica comum em sistemas biológicos e socioeconômicos. Assim, firmas respondem às mudanças no mercado, indivíduos aprendem com a experiência, ou células sintetizam proteínas de acordo com a concentração citoplasmática de reguladores.

5. **Auto-referência**: Sistemas Complexos, em particular sistemas socioeconômicos, respondem aos resultados de suas próprias ações. Por exemplo, previsões econômicas podem produzir comportamentos que, conseqüentemente, resultam justamente na concretização das previsões. Por exemplo, se os agentes esperam que o nível geral de preços aumente, podem desejar proteger-se antecipando os efeitos da ocorrência da inflação, corrigindo os preços para cima.

6. **Auto-organização**: Interações locais produzem ordem em escala global. Exemplos típicos são o comportamento de pedestres e a cadeia produtiva em uma economia de mercado.

7. **Imprevisibilidade**: Mesmo quando regido por equações inteiramente determinísticas, o comportamento de um sistema complexo pode ser imprevisível. Alguns exemplos clássicos são o clima, a dinâmica de populações e as séries temporais biológicas. O mesmo tipo de fenômeno pode ser observado em sistemas socioeconômicos, na forma, por exemplo, de choques de oferta no mercado mundial, como ocorreu no caso do petróleo nos anos de 1973 e 1979.

8. **Redes complexas**: Sistemas Complexos apresentam padrões de interação que não são inteiramente regulares (como casas de um tabuleiro de xadrez), nem inteiramente irregulares (como traços aleatórios). Em geral, redes de relações se auto-organizam localmente, de maneira aparentemente aleatória; no entanto, apresentam uma ordenação global. Redes complexas apresentam alguns poucos nós com muitas conexões e diversos outros nós com poucas conexões, apresentam distâncias médias entre nós reduzidas, que redundam em uma capacidade de influência maior do que aparentam. Exemplos de redes complexas são relações sociais, interesses acadêmicos, cadeias alimentares, rotas aéreas, cidades conectadas por estradas, *links* em páginas da internet, relações comerciais e proteoma celular.

9. **Causas múltiplas e efeitos não-lineares**: Em fenômenos socioeconômicos e biológicos, as causas dos fenômenos são, em geral, múltiplas e interativas entre si. Uma pequena variação em uma ou mais das causas pode redundar em uma grande mudança nos
efeitos observados. Técnicas estatísticas que suponham comportamentos lineares dos sistemas não são capazes de lidar corretamente com algumas ou ambas características.

10. **Invariância em escala**: Padrões complexos podem ser obtidos pela aplicação repetida de regras simples em escalas diferentes (temporais ou espaciais). Os exemplos de invariância em escala são alvéolos pulmonares, distribuição de rendas altas, tamanho de cidades e população de cidades.

A unicidade do estudo de Sistemas Complexos reside na observação de que há fenômenos que ocorrem quando há interações múltiplas e com respostas não-lineares, que permitem unificar o tratamento de diferentes áreas do conhecimento consideradas inicialmente distintas. Tal observação permite a adaptação de métodos quantitativos e analogias de um campo de conhecimento aplicadas a outro, ocasionando, com frequência, inovações científicas ou instrumentos de grande utilidade prática.

2.3.1. Área de Concentração

<table>
<thead>
<tr>
<th>Sistemas Complexos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição/Caracterização</td>
</tr>
<tr>
<td>A área de concentração de Sistemas Complexos é caracterizada pela análise de sistemas pautados pela complexidade de relações entre seus agentes integrantes para concepção de modelos de ampla aplicação, com base na integração de conceitos e aplicações em Ciências Sociais Aplicadas e Ciências Biológicas.</td>
</tr>
</tbody>
</table>

2.3.2. Linhas de Pesquisa

<table>
<thead>
<tr>
<th>Fundamentos de Sistemas Complexos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição/Caracterização</td>
</tr>
<tr>
<td>A linha de pesquisa em Fundamentos de Sistemas Complexos tem como objetivo estudar as propriedades emergentes e os fenômenos relacionados ao processamento de informações em Sistemas Complexos, por meio de técnicas analíticas, análise de dados ou simulação.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ciências Sociais e Ambientais Aplicadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição/Caracterização</td>
</tr>
<tr>
<td>A linha de pesquisa em Ciências Sociais e Ambientais Aplicadas busca aplicar conceitos e modelos teórico-metodológicos provenientes da Economia, Administração, Antropologia, Ecologia Humana e Ciências Sociais na resolução de problemas específicos.</td>
</tr>
</tbody>
</table>
2.4. Estrutura Curricular

O objetivo do curso de pós-graduação em nível de mestrado de Modelagem de Sistemas Complexos é oferecer uma formação altamente qualificada em modelagem e análise computacional aplicada aos sistemas socioeconômicos e biológicos, bem como aos sistemas resultantes de sua interação.

O curso deve proporcionar uma sólida formação teórica em técnicas computacionais e um amplo leque de aplicações, abrindo caminho para que o aluno egresso do curso de mestrado possa ingressar em um programa de doutorado em áreas afins. Pretende-se, também, avançar na proposição de um programa de doutorado em um prazo aproximado de três anos, que será a extensão natural do mestrado proposto.

A integração entre áreas do conhecimento distintas constitui conceito-chave ao desenvolvimento de conhecimentos no âmbito do programa de pós-graduação em pauta. Assim, busca-se consolidar a complementaridade entre as duas linhas de pesquisa abarcadas pelo programa através do conteúdo das disciplinas ofertadas aos alunos, especialmente no âmbito das disciplinas obrigatórias.

Os requerimentos do Programa de Pós-Graduação em Modelagem de Sistemas Complexos incluem o cumprimento de 100 (cem) créditos para obtenção do título de Mestre em Ciências, conforme detalhado no quadro a seguir.

2.4.1. Características do Programa de Pós-Graduação em Modelagem de Sistemas Complexos – Nível de Mestrado Acadêmico

<table>
<thead>
<tr>
<th>Créditos para titulação em Disciplinas</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disciplinas obrigatórias</td>
<td>20</td>
</tr>
<tr>
<td>Disciplinas optativas</td>
<td>30</td>
</tr>
<tr>
<td>Créditos para titulação em Tese / Dissertação</td>
<td>50</td>
</tr>
<tr>
<td>Créditos para titulação em Outras Categorias</td>
<td>--</td>
</tr>
<tr>
<td>Periodicidade da Seleção</td>
<td>Anual</td>
</tr>
<tr>
<td>Vagas por Seleção</td>
<td>15</td>
</tr>
</tbody>
</table>

As disciplinas optativas deverão reforçar o conhecimento do aluno sobre temas específicos ao cerne do respectivo projeto de pesquisa. Adicionalmente à oferta de disciplinas no âmbito do programa de pós-graduação em Modelagem de Sistemas Complexos, o aluno poderá, caso seja relevante ao projeto de pesquisa, cursar disciplinas em outras unidades da Universidade de São Paulo, especialmente quando o tema de pesquisa a ser desenvolvido pelo aluno exija complementação de conteúdo em relação às disciplinas disponíveis no programa proposto.
A possibilidade de cursar disciplinas em outras unidades da Universidade de São Paulo será incentivada particularmente nas unidades com afinidades com o programa de pós-graduação em Modelagem de Sistemas Complexos, a saber, Faculdade de Economia, Administração e Contabilidade (FEA), Instituto de Física (IF) e Instituto de Biociências (IB).

O curso de pós-graduação proposto exigirá a oferta de uma formação interdisciplinar ao aluno ingressante nas duas linhas de pesquisa que compõem o programa de pós-graduação, baseada em um número limitado de disciplinas obrigatórias, que, contudo, contemplarão áreas do conhecimento indispensáveis ao domínio de ferramentas e problemas estudados (vide Quadro Resumo de Disciplinas).

As disciplinas obrigatórias são: Sistemas Complexos I ou Simulação de Sistemas Complexos I (na linha de pesquisa de Fundamentos de Sistemas Complexos) e Economia Aplicada a Sistemas Complexos ou Administração Aplicada a Sistemas Complexos (na linha de pesquisa de Ciências Sociais e Ambientais Aplicadas). O aluno deverá cursar no mínimo uma disciplina obrigatória em cada linha de pesquisa.

2.4.2. Quadro Resumo das Disciplinas por Área de Concentração

<table>
<thead>
<tr>
<th>Área de Concentração</th>
<th>Linha de Pesquisa</th>
<th>Disciplina</th>
<th>Código</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistemas Complexos</td>
<td>Fundamentos</td>
<td>Métodos Matemáticos e de Computação I</td>
<td>SCX5000</td>
<td>Optativa</td>
</tr>
<tr>
<td></td>
<td>de Sistemas</td>
<td>Métodos Matemáticos e de Computação II</td>
<td>SCX5001</td>
<td>Optativa</td>
</tr>
<tr>
<td></td>
<td>Complexos</td>
<td>Sistemas Complexos I</td>
<td>SCX5002</td>
<td>Obrigatória</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistemas Complexos II</td>
<td>SCX5003</td>
<td>Optativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulação de Sistemas Complexos I</td>
<td>SCX5004</td>
<td>Obrigatória</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simulação de Sistemas Complexos II</td>
<td>SCX5005</td>
<td>Optativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Economia Aplicada a Sistemas Complexos</td>
<td>SCX5010</td>
<td>Obrigatória</td>
</tr>
<tr>
<td></td>
<td>Ciências Sociais</td>
<td>Administração Aplicada a Sistemas Complexos</td>
<td>SCX5011</td>
<td>Obrigatória</td>
</tr>
<tr>
<td></td>
<td>e Ambientais</td>
<td>Ecologia Humana e Antropologia Econômica I</td>
<td>SCX5012</td>
<td>Optativa</td>
</tr>
<tr>
<td></td>
<td>Aplicadas</td>
<td>Ecologia Humana e Antropologia Econômica II</td>
<td>SCX5013</td>
<td>Optativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sistemas de Marketing</td>
<td>SCX5014</td>
<td>Optativa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tópicos Especiais em Economia Aplicada</td>
<td>SCX5015</td>
<td>Optativa</td>
</tr>
</tbody>
</table>
2.4.3. Fichas das Disciplinas do Programa de Pós-Graduação em Modelagem de Sistemas Complexos
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5000
NOME DA DISCIPLINA: Métodos Matemáticos e de Computação I
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos / Modelagem Computacional de Sistemas Complexos
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/1S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. André Cavalcanti Rocha Martins
 X Docente USP n.º 261113
 [] Docente externo. Data de obtenção do título: Instituição:

2. Ana Amélia Benedito Silva
 X Docente USP n.º 87769
 [] Docente externo. Data de obtenção do título: Instituição:

PROGRAMA
OBJETIVOS:
Apresentar técnicas estatísticas de análise e caracterização de dados, bem como modelagem paramétrica de séries temporais.

JUSTIFICATIVA:
Estudar um sistema a partir dos dados que produz significa capturar padrões, propriedades invariantes ou correlações estatísticas que descrevem fenômenos interessantes do sistema, assim
como propor uma modelagem paramétrica para descrever o comportamento dinâmico dos sistemas.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5001
NOME DA DISCIPLINA: Métodos Matemáticos e de Computação II
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos / Modelagem Computacional de Sistemas Complexos
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/2S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):

1. Renato Vicente
 [X] Docente USP n.º 1893642
 [] Docente externo. Data de obtenção do título: Instituição:

2. Camilo Rodrigues Neto
 [X] Docente USP n.º 643283
 [] Docente externo. Data de obtenção do título: Instituição:

3. Fernando Fagundes Ferreira
 [X] Docente USP n.º 981972
 [] Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
Apresentar as principais técnicas para resolver equações diferenciais parciais e estocásticas, bem como aplicações em finanças.
JUSTIFICATIVA:
Uma das abordagens de sistemas complexos se dá via equações diferenciais parciais ou cálculo estocástico, ou, ainda, via processos estocásticos. A ênfase será dada a problemas de finanças, uma vez que os exemplos são fartos e também despertam nos estudantes muito interesse, além de proporcionar uma formação altamente demandada no mercado de trabalho, especialmente no mercado financeiro.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5002
NOME DA DISCIPLINA: Sistemas Complexos I
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos / Modelagem Computacional de Sistemas Complexos
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/1S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. Renato Vicente
 [X] Docente USP nº 1893642
 [] Docente externo. Data de obtenção do título: Instituição:

2. Fernando Fagundes Ferreira
 [X] Docente USP nº 981972
 [] Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
O objetivo desta disciplina é introduzir os alunos às ideias e aos modelos dos Sistemas Complexos através de exemplos e, portanto, de forma prática e aplicada.
JUSTIFICATIVA:

Preparar o estudante para lidar com conceitos básicos que descrevem o ferramental de modelagem. A disciplina permite estabelecer o que entendemos por sistemas complexos.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5003
NOME DA DISCIPLINA: Sistemas Complexos II
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos / Modelagem Computacional de Sistemas Complexos
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/2S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. Renato Vicente
 X Docente USP n.º 1893642
 Docente externo. Data de obtenção do título: Instituição:

2. Camilo Rodrigues Neto
 X Docente USP n.º 643283
 Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
Apresentar técnicas analíticas mais avançadas bem como modelos clássicos para ilustrar para ilustrar a aplicação das técnicas abordadas.
JUSTIFICATIVA:
A disciplina fornece instrumentos analíticos para abordar diversos aspectos que constituem um sistema complexo. Além disso, os modelos propostos são exemplos bem sucedidos de Modelagem de Sistemas Complexos adotados pelas áreas de física, economia, finanças e ecologia. O aluno terá contato com a fundamentação teórica destas técnicas e sua imediata aplicação. Devido à familiaridade dos estudantes, que terão cursado Sistemas Complexos I, a abordagem se dará em nível mais aprofundado e completo.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5004
NOME DA DISCIPLINA: Simulação de Sistemas Complexos I
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos / Modelagem Computacional de Sistemas Complexos
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/1S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. André Cavalcanti Rocha Martins
 X Docente USP n.º 261113
 □ Docente externo. Data de obtenção do título: Instituição:

2. Camilo Rodrigues Neto
 X Docente USP n.º 643283
 □ Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
Apresentar ao aluno as técnicas básicas de simulação de sistemas complexos, a serem utilizadas quando uma solução analítica para o problema de interesse não for encontrada. O aluno deverá compreender também as principais idéias e justificativas por trás do conceito de simulação, assim como ser capaz de realizar suas próprias simulações.
JUSTIFICATIVA:
Técnicas de simulação são fundamentais no estudo de Sistemas Complexos. Isto decorre do fato de que, frequentemente, uma solução analítica do modelo proposto não pode ser encontrada facilmente e, portanto, o desenvolvimento de técnicas de aproximação computacional torna-se indispensável.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5005
NOME DA DISCIPLINA: Simulação de Sistemas Complexos II
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos / Modelagem Computacional de Sistemas Complexos
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/2S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. André Cavalcanti Rocha Martins
 X Docente USP n.º 261113
 [] Docente externo. Data de obtenção do título: Instituição:

2. Ana Amélia Benedito Silva
 X Docente USP n.º 87769
 [] Docente externo. Data de obtenção do título: Instituição:

3. Fernando Fagundes Ferreira
 X Docente USP n.º 981972
 [] Docente externo. Data de obtenção do título: Instituição:
PROGRAMA

OBJETIVOS:
Aprofundar o conhecimento obtido com a disciplina Simulação de Sistemas Complexos I, apresentando ao aluno técnicas novas e/ou mais avançadas que ele possa utilizar na simulação dos sistemas de seu interesse.

JUSTIFICATIVA:
O conjunto de técnicas de simulação existentes torna necessária a existência de dois módulos de forma a fornecer ao estudante um panorama geral dessas técnicas. Desta forma, este curso permitirá um contato com outras ferramentas necessárias para o pesquisador que for utilizar simulações de forma importante em seu trabalho.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5010
NOME DA DISCIPLINA: Economia Aplicada a Sistemas Complexos
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos /Ciências Sociais e Ambientais Aplicadas
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/15
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. Carlos de Brito Pereira
 X Docente USP n.º 2168766
 Docente externo. Data de obtenção do título: Instituição:

2. Flávia Mori Sarti Machado
 X Docente USP n.º 1119925
 Docente externo. Data de obtenção do título: Instituição:

3. Paulo Antonio de Almeida Sinisgalli
 X Docente USP n.º 1252362
 Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
O objetivo da disciplina é apresentar as principais vertentes da teoria econômica (main stream) e as
principais correntes alternativas, passíveis de aplicações de simulações complexas, buscando
confrontar pressupostos e hipóteses que as diferenciam e apontando questões para investigação em modelagem de sistemas complexos.

JUSTIFICATIVA:
O curso foi formulado buscando-se apresentar aos alunos de pós-graduação os problemas econômicos passíveis de simulação e uso de modelos computacionais, de forma a possibilitar proposição de temas de pesquisa em modelagem de sistemas complexos.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5011
NOME DA DISCIPLINA: Administração Aplicada a Sistemas Complexos
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos /Ciências Sociais e Ambientais Aplicadas
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/1S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. Fernando de Souza Coelho
 X Docente USP n.º 1051844
 Docente externo. Data de obtenção do título: Instituição:

2. Francisco Javier Sebastian Mendizabal Alvarez
 X Docente USP n.º 806433
 Docente externo. Data de obtenção do título: Instituição:

3. Carlos de Brito Pereira
 X Docente USP n.º 2168766
 Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
A disciplina apresenta introdutoriamente a Teoria Geral da Administração, tanto sob uma perspectiva da Teoria das Organizações - em geral - e das Escolas da Administração - em particular -,
como sob o prisma dos modelos de gestão no que se refere ao processo administrativo e as suas áreas funcionais.

JUSTIFICATIVA:
Os alunos provenientes de áreas de conhecimento não relacionadas à Gestão/Administração devem consolidar conhecimentos introdutórios sobre Modelos de Gestão e Teoria Geral da Administração para proposição de temas de pesquisa em Modelagem de Sistemas Complexos.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5012
NOME DA DISCIPLINA: Ecologia Humana e Antropologia Econômica I
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos /Ciências Sociais e Ambientais Aplicadas
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/15
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. Carla Morsello
 X Docente USP n.º 138953
 Docente externo. Data de obtenção do título: Instituição:

2. Cristina Adams
 X Docente USP n.º 358969
 Docente externo. Data de obtenção do título: Instituição:

3. Paulo Antonio de Almeida Sinisgalli
 X Docente USP n.º 1252362
 Docente externo. Data de obtenção do título: Instituição:

PROGRAAMA

OBJETIVOS:
A disciplina enfatiza efeitos da integração aos mercados sobre grupos autárquicos e semi-autárquicos, bem como transformações nas práticas de uso de recursos naturais em atividades de caça, pesca, coleta e agricultura de subsistência.

JUSTIFICATIVA:
A disciplina discute conceitos relativos ao modo de vida de sociedades autárquicas e semi-autárquicas, com ênfase nos aspectos da economia e ecologia de habitantes de florestas tropicais para contribuir ao estudo de aspectos socioeconômicos, ecologia humana, estratégias de conservação com base comunitária e comportamento de sociedades autárquicas.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5013
NOME DA DISCIPLINA: Ecologia Humana e Antropologia Econômica II
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos /Ciências Sociais e Ambientais Aplicadas
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/25
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. Carla Morsello
 X Docente USP n.º 138953
 Docente externo. Data de obtenção do título: Instituição:

2. Cristina Adams
 X Docente USP n.º 358969
 Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
A disciplina tem como objetivo apresentar os principais aspectos metodológicos relacionados à construção de modelos para estudo de sociedades autárquicas e semi-autárquicas, possibilitando o delineamento de estudos e a escolha de técnicas apropriadas no levantamento de dados em campo ou a partir de fontes secundárias relativos a grupos autárquicos e semi-autárquicos.
JUSTIFICATIVA:
O estudo de grupos autárquicos e semi-autárquicos pode ser realizado a partir de diferentes abordagens e métodos, por meio de técnicas variadas, oriundas de várias áreas de conhecimento. A disciplina deve compilar técnicas de análise provenientes de diferentes áreas, que sejam importantes ao estudo de grupos autárquicos e semi-autárquicos, a partir de modelos causais ou explicativos e predivitivos.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5014
NOME DA DISCIPLINA: Sistemas de Marketing
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos /Ciências Sociais e Ambientais Aplicadas
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/2S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. Fernando de Souza Coelho
 Docente USP n.º 1051844
 ☑ Docente externo. Data de obtenção do título: Instituição:

2. Francisco Javier Sebastian Mendizabal Alvarez
 Docente USP n.º 806433
 ☑ Docente externo. Data de obtenção do título: Instituição:

3. Carlos de Brito Pereira
 Docente USP n.º 2168766
 ☑ Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
O objetivo da disciplina é apresentar a teoria e os usos do marketing em uma abordagem que enfatiza relações entre vários agentes em um sistema de marketing. O marketing deve ser
entendido como mais um fenômeno que emerge das relações dos agentes em uma economia capitalista. A abordagem proposta é apresentar o marketing como um sistema complexo que pode ser submetido a modelagem e simulações por agentes. A partir de tal abordagem, espera-se sugerir problemas passíveis de serem modelados e estudados usando, principalmente, técnicas de simulação por agentes.

JUSTIFICATIVA:
O propósito da disciplina é oferecer questões relevantes de marketing para modelagem, gerando novas aplicações para teorias originadas na física sobre fenômenos complexos, a partir do conteúdo das disciplinas Sistemas Complexos I e Modelagem de Sistemas Complexos I.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
CÂMARA CURRICULAR DO CoPGr
FORMULÁRIO PARA APRESENTAÇÃO DE DISCIPLINAS

SIGLA DA DISCIPLINA: SCX5015
NOME DA DISCIPLINA: Tópicos Especiais em Economia Aplicada
PROGRAMA/ÁREA: Modelagem de Sistemas Complexos /Ciências Sociais e Ambientais Aplicadas
Nº DA ÁREA:
VALIDADE INICIAL (Ano/Semestre): 2010/2S
Nº DE CRÉDITOS: 10
Aulas Teóricas: 4 Aulas Práticas, Seminários e Outros: -- Horas de Estudo: 6
DURAÇÃO EM SEMANAS: 15

DOCENTE(S) RESPONSÁVEL(EIS):
1. Flávia Mori Sarti Machado
 X Docente USP n.º 1119925
 Docente externo. Data de obtenção do título: Instituição:

2. Fernando de Souza Coelho
 X Docente USP n.º 1051844
 Docente externo. Data de obtenção do título: Instituição:

PROGRAMA

OBJETIVOS:
O objetivo da disciplina é integrar conhecimentos em técnicas de Modelagem de Sistemas Complexos e economia aplicada, especialmente no que tange à aplicação da avaliação econômica nos processos decisórios em gestão e políticas públicas setoriais. Particularidades de sistemas de gestão e políticas públicas setoriais serão apresentados aos alunos, em conjunção com aplicações que permitam a simulação de diferentes resultados possíveis a partir de preceitos básicos da avaliação econômica.
JUSTIFICATIVA:
A disciplina deve possibilitar aos alunos atuar na formulação de decisões para questões complexas em economia aplicada a políticas públicas setoriais e processos de gestão, através da integração de conhecimentos em Simulação de Sistemas Complexos I e Simulação de Sistemas Complexos II. A abordagem integrada no estudo de processos decisórios para gestão e políticas públicas setoriais deve permitir o delineamento de ações de maior eficiência e efetividade em diversos campos de conhecimento e setores de atividade.

CONTEÚDO (EMENTA):

BIBLIOGRAFIA:

CRITÉRIOS DE AVALIAÇÃO: Provas, trabalhos e seminários.
2.5. **Infra-Estrutura para Ensino, Pesquisa e Extensão**

A Escola de Artes, Ciências e Humanidades constitui uma unidade ainda em fase de implantação, apresentando, atualmente, 46.000m² de área construída. Os docentes possuem salas individuais com computadores próprios e acesso à rede e internet.

Há 30 salas de aula com capacidade de sessenta alunos cada uma, tendo disponíveis computador e projetor. A unidade dispõe, ainda, de duas salas de seminários, três anfiteatros e cinco auditórios para eventos acadêmicos e extensão, além de oito laboratórios de informática, cada um com trinta microcomputadores, que oferecem acesso à internet.

A Comissão de Pesquisa e Pós-Graduação da unidade tem realizado modificações estruturais, buscando oferecer maior apoio administrativo à implementação dos programas de pós-graduação, como, por exemplo, atribuindo as tarefas relativas à pós-graduação exclusivamente a um funcionário. Maior quantidade de recursos humanos direcionados aos procedimentos administrativos de programas de pós-graduação devem obter incremento a partir do início das atividades de tais programas.

Infra-estrutura da Escola de Artes, Ciências e Humanidades

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Área construída</td>
<td>46.000m²</td>
</tr>
<tr>
<td>Salas para docentes do programa de pós-graduação</td>
<td>12 (01 computador cada)</td>
</tr>
<tr>
<td>Salas de aula</td>
<td>30</td>
</tr>
<tr>
<td>Salas de estudo e pesquisa*</td>
<td>10</td>
</tr>
<tr>
<td>Laboratórios de informática</td>
<td>08 salas (30 computadores cada)</td>
</tr>
<tr>
<td>Salas de reunião</td>
<td>02</td>
</tr>
<tr>
<td>Anfiteatros</td>
<td>03</td>
</tr>
<tr>
<td>Auditórios</td>
<td>05</td>
</tr>
<tr>
<td>Biblioteca</td>
<td>01</td>
</tr>
</tbody>
</table>

(*) As salas de estudo e pesquisa constituem espaços com mesa de reunião, cadeiras e computador ligado à rede e internet, usualmente destinados à disciplina de Resolução de Problemas (*Problem-Based Learning*), uma inovação em termos de ensino de graduação introduzida na estrutura curricular dos cursos da EACH-USP. Tais salas também são disponíveis para realização de reuniões e grupos de estudo e pesquisa.

Deve-se ressaltar que, além da infra-estrutura atualmente disponível, a direção da escola tem definido cronogramas para implantação de novos prédios, que devem aumentar a disponibilidade de espaço de ensino, pesquisa e extensão para docentes, discentes e funcionários da unidade.
O número de salas de aula tem sido suficiente para realização das atividades de ensino em nível de graduação aos dez cursos da unidade, apresentando ampla possibilidade de abrigar aulas em nível de pós-graduação, tendo em vista que há ociosidade de diversas salas de aula durante o semestre em determinados dias e horários.

Uma comissão de infra-estrutura tem realizado reuniões periódicas para aprimorar a distribuição do espaço disponível, especialmente no que tange à possibilidade de aumento de número de salas de estudo e laboratórios de pesquisa para diferentes usos na unidade, de forma a promover maior adequação às necessidades dos grupos de pesquisa atuantes na escola.

A demanda por espaço do grupo de pesquisa GRIFE, encaminhada à comissão responsável pelo espaço físico da unidade, prevê um espaço exclusivo para atividades de pesquisa e atividades didáticas complementares no formato de laboratório de informática com área útil de aproximadamente 50m², que já apresente ponto de rede com IP fixo, rede elétrica capaz de atender a um cluster de computadores e ar-condicionado, assim como um conjunto de softwares para simulação e análises estatísticas.

O espaço solicitado será dedicado à realização das atividades de pesquisa e extensão relativas ao presente programa de pós-graduação, tais como: desenvolvimento de projetos, análise de modelos socioeconômicos e ambientais, produção de artigos acadêmicos, programação de computadores, acomodação de alunos orientados e realização periódica de seminários e reuniões.

Dado que os docentes envolvidos na presente proposta já obtiveram cinco (5) novos computadores e diversos itens de mobiliário de escritório durante o último ano, via financiamentos de pesquisa (seção 3.3.2), além de material bibliográfico suficiente para compor uma pequena biblioteca dedicada à modelagem de sistemas complexos, o espaço deverá ser ocupado com os recursos materiais já disponíveis.

Assim, pode-se destacar que, em vista dos financiamentos de pesquisa obtidos pelos docentes participantes da proposta – direcionados à aquisição de equipamentos e materiais de apoio à pesquisa e pós-graduação, como computadores, mobiliário e material bibliográfico – aliados ao esforço institucional de construção e aproveitamento dos espaços disponíveis, há boa disponibilidade de infra-estrutura para o programa de pós-graduação proposto.

A escola possui uma biblioteca com 5.000m² de área construída, que apresenta um acervo com mais de 15.000 livros e 491 coleções de periódicos disponível para consulta e empréstimo. O espaço da biblioteca disponibiliza doze computadores ligados à rede da universidade e à internet, disponibilizando o acesso a bases de dados de uso público e bases de dados de uso regulamentado.
Destaca-se a existência de serviços que possibilitam ampliar o acesso dos alunos a materiais disponíveis em bibliotecas de outras unidades da Universidade de São Paulo (empréstimo entre bibliotecas e comutação bibliográfica), além de amplo acesso ao acervo de bibliotecas das demais universidades estaduais paulistas.

As bibliotecas da Universidade de São Paulo são geridas pelo Sistema Integrado de Bibliotecas (SIBM/USP), que oferece consulta livre aos materiais dos acervos e diversas bases de dados, empréstimos e comutação bibliográfica (fotocópias de artigos de revistas, via internet e outros meios), além de treinamentos para acesso a bases de dados de uso público ou regulamentado nos computadores interligados à rede da universidade.

Dados Gerais: Base de dados DEDALUS-Catálogo Global/USP

<table>
<thead>
<tr>
<th>Número de livros</th>
<th>2.048.551</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de periódicos</td>
<td>20.073 coleções</td>
</tr>
<tr>
<td></td>
<td>[4.334.846 fascículos]</td>
</tr>
</tbody>
</table>

Áreas de concentração das publicações

Geral:
- Ciências Exatas e Tecnologia
- Ciências Humanas
- Ciências Biológicas

Dados Gerais: Base de dados DEDALUS-Catálogo EACH/USP

<table>
<thead>
<tr>
<th>Número de livros</th>
<th>15.665</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de periódicos</td>
<td>491 coleções</td>
</tr>
<tr>
<td></td>
<td>[11.266 fascículos]</td>
</tr>
</tbody>
</table>

Áreas de concentração das publicações

Geral:
- Ciências Exatas e Tecnologia
- Ciências Humanas
- Ciências Biológicas

Número de computadores na biblioteca ligados à rede mundial de computadores: 12
2.6. **Atividades Inovadoras e Diferenciadas de Informação e Gestão**

O grupo de pesquisas foi constituído no âmbito de uma unidade de ensino pautada pela inovação acadêmica, dada a ausência de departamentos e adoção de metodologia de ensino diferenciada – particularmente o *Problem-Based Learning*.

Os docentes que compõem a presente proposta para programa de pós-graduação têm se pautado em excelência acadêmica na proposição de projetos e produção de artigos interdisciplinares em periódicos de alto impacto, além de buscar consolidar no Brasil uma área do conhecimento inovadora, iniciativa que deve beneficiar-se substancialmente do programa de pós-graduação proposto, via formação de pesquisadores e multiplicação da produção acadêmica na área.

As contribuições previstas do programa de pós-graduação em Modelagem de Sistemas Complexos ocorrerão nas diferentes áreas do conhecimento apresentadas. Serão formados pesquisadores capacitados a adotar abordagens inovadoras para problemas científicos, bem como ao desenvolvimento de ferramentas e soluções práticas.

Dentro de tal contexto, existem inúmeras possibilidades de desenvolvimento de projetos na interface entre setor privado, setor público e comunidade acadêmica, a partir do presente programa de pós-graduação. Pode-se, portanto, acrescentar como missão adicional do programa ora apresentado a integração entre ciência e sociedade pelo incentivo à articulação entre ciência básica e ciência aplicada, por meio do uso de abordagens baseadas em conhecimentos multidisciplinares, permitindo a flexibilidade na adaptação do instrumental técnico a diferentes situações.

Adicionalmente, o programa de pós-graduação proposto deve buscar parcerias com organizações públicas e privadas em nível nacional e internacional para potencializar os impactos resultantes dos estudos e pesquisas desenvolvidos. Atualmente, estima-se que o programa de pós-graduação em Modelagem de Sistemas Complexos já apresenta potencial elevado de impacto em âmbito internacional, tendo em vista a existência de poucas instituições de excelência acadêmica dedicadas à investigação do tema proposto (vide Seção 6.1).
3. **Corpo Docente**

O programa de pós-graduação de Modelagem de Sistemas Complexos apresenta corpo docente com perfil de formação interdisciplinar e experiência de pesquisa e docência compatíveis à proposta apresentada, conforme caracterização apresentada a seguir (Seção 3.1).

A participação em atividades de docência prevista na estrutura curricular do programa foi formulada e distribuída de acordo com formação acadêmica e experiência docente dos participantes (Seção 3.2).

Os projetos em andamento desenvolvidos no âmbito da área de concentração e linhas de pesquisa delineadas constituem colaborações entre os docentes do programa, concebidas com base em sólida formação acadêmica de caráter interdisciplinar (Seção 3.3), que têm obtido excelente aceitação nas agências de fomento à pesquisa (Seções 3.3.1 e 3.3.2).

3.1. Caracterização do Corpo Docente

O corpo docente do programa conta com doze (12) docentes, sendo onze (11) docentes em regime dedicação integral ao ensino e pesquisa – um dos quais é bolsista produtividade CNPq nível 2 –, e um (1) docente em regime de tempo parcial (vide Relação do Corpo Docente do Programa por Área de Concentração a seguir).

Ressalta-se que a futura contratação de novos docentes para compor os cursos de graduação da EACH deve resultar na integração de novos pesquisadores à presente proposta a curto prazo. Assim, espera-se que em, no máximo, dois (2) anos, o programa de pós-graduação de Modelagem de Sistemas Complexos deva alcançar um corpo docente composto por, no mínimo, vinte (20) participantes, entre docentes da unidade e colaboradores.
3.1.1. Relação do Corpo Docente do Programa por Área de Concentração

<table>
<thead>
<tr>
<th>Área de Concentração</th>
<th>Linha de Pesquisa</th>
<th>Docentes</th>
<th>Regime de Trabalho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistemas Complexos</td>
<td>Fundamentos de Sistemas Complexos</td>
<td>Ana Amélia Benedito Silva</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fernando Fagundes Ferreira (*)</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renato Vicente</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td>Ciências Sociais e Ambientais Aplicadas</td>
<td>Carla Morsello</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carlos de Brito Pereira</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cristina Adams</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fernando de Souza Coelho</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flávia Mori Sarti Machado</td>
<td>RDIDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>RTC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paulo Antonio de Almeida Sinigalli</td>
<td>RDIDP</td>
</tr>
</tbody>
</table>

Legenda: (*) Bolsista produtividade CNPq nível 2; RDIDP = Regime de Dedicação Integral à Docência e Pesquisa; RTC = Regime em Turno Completo.

A formação acadêmica do corpo docente apresenta titulação caracterizada pela ampla diversificação de origem institucional. Há três (3) docentes com pós-doutorado –dos quais, dois (2) pós-doutorados em instituições estrangeiras. Três (3) docentes do programa realizaram doutorado no exterior, sendo dois (2) doutorados completos e um (1) via bolsa sanduíche. Adicionalmente, um (1) docente cursou mestrado sanduíche em universidade estrangeira e um (1) docente realizou duas (2) especializações no exterior (vide Quadro de Titulação do Corpo Docente a seguir).
Fundamentos de Sistemas Complexos

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Titulação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ana Amélia Benedito Silva</td>
<td>Graduação, Mestrado e Doutorado em Engenharia Elétrica (EP-USP)</td>
</tr>
<tr>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td>Graduação, Mestrado, Doutorado e Pós-doutorado em Física (IF-USP)</td>
</tr>
<tr>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td>Graduação e Mestrado em Física (UNICAMP) Doutorado em Física (IF-USP) Pós-doutorado em Física Estatística (Max Planck Institute for the Physics of Complex Systems - Alemanha)</td>
</tr>
<tr>
<td></td>
<td>Fernando Fagundes Ferreira</td>
<td>Graduação, Mestrado e Doutorado em Física (IF-USP) Pós-doutorados (2) em Física (UNESP) Pós-doutorado em Física Estatística (International Centre for Theoretical Physics Abdum Salam - Itália)</td>
</tr>
<tr>
<td></td>
<td>Renato Vicente</td>
<td>Graduação em Ciências Moleculares (USP) Mestrado em Física (IF-USP) Doutorado em Ciência da Computação e Física Estatística (University of Aston in Birmingham - Inglaterra) Pós-Doutorado em Física (IF-USP)</td>
</tr>
</tbody>
</table>

(continua)
<table>
<thead>
<tr>
<th>Nome</th>
<th>Graduação/Especialização/Doutorado</th>
</tr>
</thead>
</table>
| Carla Morsello | Graduação em Ciências Biológicas (IB-USP)
Especialização em Ciências Ambientais (Università degli Studi di Bologna - Itália)
Mestrado em Ciência Ambiental (PROCAM-USP)
Doutorado em Ciências Ambientais (University of East Anglia - Inglaterra) |
| Carlos de Brito Pereira | Graduação em Ciências Econômicas (UNICAMP)
Mestrado e Doutorado em Administração (FEA-USP) |
| Cristina Adams | Licenciatura e Bacharelado em Ciências Biológicas (IB-USP)
Mestrado em Ciência Ambiental (PROCAM-USP)
Doutorado em Ecologia (IB-USP)
Doutorado sanduíche em Antropologia (Università de Kent at Canterbury - Inglaterra) |
| Fernado de Souza Coelho | Graduação em Ciências Econômicas (FEAR-P-USP)
Mestrado sanduíche em Administração (Instituto Tecnológico Autónomo de México - México)
Mestrado e Doutorado em Administração Pública e Governo (FGV-SP) |
| Flávia Mori Sarti Machado | Graduação em Economia (FEA-USP)
Graduação em Nutrição (FSP-USP)
Doutorado Direito Interunidades em Nutrição Humana Aplicada (PRONUT-FCF/FEA/FSP-USP) |
| Francisco Javier Sebastian Mendizabal Alvarez | Graduação em Ciências Econômicas (Fundação Santo André)
Graduação em Ciências Contábeis (Fundação Santo André)
Mestrado e Doutorado em Administração (FEA-USP) |
| Paulo Antonio de Almeida Sinisgalli | Graduação em Biologia (Universidade de São Paulo)
Graduação em Engenharia Civil e Sanitária (Instituto Mauá de Tecnologia)
Especialização em Gestão Ambiental (Universidade Técnica de Dresden - Alemanha)
Mestrado em Ciência Ambiental (Universidade de São Paulo)
Doutorado em Economia Aplicada (Universidade Estadual de Campinas) |
Em termos de experiência docente, seis (6) docentes apresentam experiência superior a cinco (5) anos, referentes a período de experiência anterior ao ingresso na EACH-USP (vide Quadro de Experiência em Docência a seguir). Destaca-se que a maior parte do corpo docente da proposta é composto por jovens pesquisadores, recentemente titulados e novos ingressantes na carreira docente da Universidade de São Paulo.
3.1.3. Experiência Didática dos Participantes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos(*)

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Experiência em Docência</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Instituição</td>
</tr>
<tr>
<td>Fundamentos de Sistemas Complexos</td>
<td>Ana Amélia Benedito Silva</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curso de Sistemas de Informação</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Universidade Federal de São Paulo (UNIFESP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Universidade de Mogi das Cruzes (UMC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sociedade Educacional São Paulo (SESP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Universidade Presbiteriana Mackenzie</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pontifícia Universidade Católica de São Paulo (PUC-SP)</td>
</tr>
<tr>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curso de Sistemas de Informação</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instituto Brasileiro de Mercado de Capitais (IBMEC)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Universidade de Taubaté (UNITAU)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Universidade São Judas Tadeu (USJT)</td>
</tr>
<tr>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curso de Sistemas de Informação</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Universidade Federal de São Carlos (UFSCAR)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Oldenburg (Alemanha)</td>
</tr>
<tr>
<td></td>
<td>Fernando Fagundes Ferreira</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curso de Sistemas de Informação</td>
</tr>
<tr>
<td></td>
<td>Renato Vicente</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curso de Sistemas de Informação</td>
</tr>
</tbody>
</table>

(continua)
<table>
<thead>
<tr>
<th>Nome</th>
<th>Escola ou Instituto</th>
<th>Ano</th>
<th>Graduação/Pós-graduação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carla Morsello</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
<td>2005-</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Curso de Gestão Ambiental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Programa de Pós-graduação em Ciência Ambiental (PROCAM-USP)</td>
<td>2009-</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td>Carlos de Brito Pereira</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
<td>2005-</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Curso de Têxtil e Moda</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundação Armando Álvares Penteado (FAAP)</td>
<td>2005</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Faculdade de Economia, Administração e Contabilidade (FEA-USP)</td>
<td>2006</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td>Cristina Adams</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
<td>2005-</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Curso de Gestão Ambiental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Departamento de Ecologia, Instituto de Biociência (IBUSP)</td>
<td>2007</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td></td>
<td>Centro Universitário do Serviço Nacional de Aprendizagem Comercial (SENAC)</td>
<td>2002-2005</td>
<td>Graduação</td>
</tr>
<tr>
<td>Fernando de Souza Coelho</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
<td>2007-</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Curso de Gestão de Políticas Públicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flávia Mori Sarti Machado</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
<td>2006-</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Curso de Gestão de Políticas Públicas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Faculdade de Saúde Pública (FSP-USP)</td>
<td>2007</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td>Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
<td>2005-</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Curso de Marketing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fundação Instituto de Administração (FIA)</td>
<td>2003-</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td></td>
<td>Escola Superior de Propaganda e Marketing (ESPM)</td>
<td>2006</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td></td>
<td>Instituto Brasileiro de Mercado de Capitais (IBMEC)</td>
<td>2000-2006</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td></td>
<td>Fundação Armando Álvares Penteado (FAAP)</td>
<td>1994-2005</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Instituto Mauá de Tecnologia (IMT)</td>
<td>1999</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Centro Universitário Fundação Santo André (CUFSA)</td>
<td>1984-1989</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Fundação Escola de Comércio Álvares Penteado (FECAP)</td>
<td>1985-1986</td>
<td>Graduação</td>
</tr>
<tr>
<td>Paulo Antonio de Almeida Sinigalli</td>
<td>Escola de Artes, Ciências e Humanidades (EACH-USP)</td>
<td>2006-</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Curso de Gestão Ambiental</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Centro Universitário do Serviço Nacional de Aprendizagem Comercial (SENAC)</td>
<td>2005-2006</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>LA2 Arquitetura e Meio Ambiente</td>
<td>2003-2005</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td></td>
<td>Instituto Internacional de Educação do Brasil (IIEB)</td>
<td>2004</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Fundação Armando Álvares Penteado (FAAP)</td>
<td>2004</td>
<td>Pós-graduação</td>
</tr>
<tr>
<td></td>
<td>Faculdade SENAC de Educação Ambiental (SENAC)</td>
<td>2003-2004</td>
<td>Graduação</td>
</tr>
<tr>
<td></td>
<td>Instituto Brasileiro de Avaliações e Perícias de Engenharia de São Paulo (IBAPE-SP)</td>
<td>1998</td>
<td>Pós-graduação</td>
</tr>
</tbody>
</table>

(*) Somente experiências didáticas em nível de graduação e pós-graduação.
Dada a recente criação da unidade, considera-se adequada a dimensão, composição e dedicação dos docentes permanentes ao desenvolvimento das atividades de ensino, pesquisa e orientação do programa, ressaltando-se a existência de um planejamento para novas adesões ao corpo docente do programa a curto prazo.

Ademais, a titulação e a experiência em docência dos participantes do programa apresentam perfil de alta compatibilidade e aderência à proposta de pós-graduação em Modelagem de Sistemas Complexos.

Destaca-se, sobretudo, que o corpo docente do programa já apresenta mérito acadêmico em termos de produção científica e obtenção de financiamentos a projetos de pesquisa direcionados a temas diretamente vinculados à proposta de pós-graduação (vide Seção 3.3). O volume de publicações de alto impacto acadêmico e projetos de pesquisa em andamento são resultantes da ampla integração interdisciplinar dos pesquisadores com diferentes especialidades que compõem o corpo docente do programa, conforme pode-se verificar nas seções a seguir.

Os participantes do corpo docente do programa de pós-graduação de Modelagem de Sistemas Complexos integram cinco diferentes cursos de graduação na EACH, sendo que nenhum dos cursos de graduação é diretamente ligado à área de conhecimento da presente proposta. Dada a interdisciplinaridade que pauta o programa de pós-graduação proposto, a atuação dos docentes em atividades de ensino e pesquisa dos respectivos cursos de graduação deve apresentar significativa repercussão para formação de futuros ingressantes no presente programa de pós-graduação.

Assim, buscou-se discriminar a experiência em orientações dos docentes participantes do programa, desde iniciação científica até doutorado (Seção 3.1.4), e, em seguida, destacar as bolsas e apoios financeiros pessoais obtidos (Seção 3.1.5). Posteriormente, apresenta-se a experiência relativa à participação em outros programas de pós-graduação dos docentes participantes do programa (Seção 3.1.6).
3.1.4. Experiência em Orientação dos Participantes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos(*)

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Situação</th>
<th>Tipo de Orientação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>IC</td>
<td>TCC</td>
</tr>
<tr>
<td>Fundamentos</td>
<td>Ana Amélia Benedito Silva</td>
<td>Finalizadas 1</td>
<td>--</td>
</tr>
<tr>
<td>de Sistemas</td>
<td></td>
<td>Em Andamento 2</td>
<td>--</td>
</tr>
<tr>
<td>Complexos</td>
<td>André Cavalcanti Rocha Martins</td>
<td>Finalizadas --</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento --</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td>Finalizadas --</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento --</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Fernando Fagundes Ferreira</td>
<td>Finalizadas 2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento 2</td>
<td>--</td>
</tr>
<tr>
<td>Ciências</td>
<td>Renato Vicente</td>
<td>Finalizadas 2</td>
<td>2</td>
</tr>
<tr>
<td>Sociais e</td>
<td></td>
<td>Em Andamento 2</td>
<td>--</td>
</tr>
<tr>
<td>Ambientais</td>
<td>Carla Morsello</td>
<td>Finalizadas 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento --</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Carlos de Brito Pereira</td>
<td>Finalizadas 1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento 1</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Cristina Adams</td>
<td>Finalizadas --</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento 1</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Fernando de Souza Coelho</td>
<td>Finalizadas 2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento --</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Flávia Mori Sarti Machado</td>
<td>Finalizadas 3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento --</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>Finalizadas --</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento --</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Paulo Antonio de Almeida Sinisgalli</td>
<td>Finalizadas --</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Em Andamento 2</td>
<td>--</td>
</tr>
</tbody>
</table>

Orientações dos Docentes Permanentes do Programa 18 40 4 13 19 --

Legenda: IC = Iniciação Científica; TCC = Trabalho de Conclusão de Curso; ESP = Especialização; MP = Mestrado Profissional; ME = Mestrado Acadêmico; DO = Doutorado.
3.1.5. Bolsas Obtidas pelos Docentes Participantes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos no Triênio 2006-2008

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Tipo de Bolsa (Período)</th>
<th>Valor</th>
<th>Agência Financiadora</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Renato Vicente</td>
<td>Auxílio à Participação em Evento (2008)</td>
<td>R$ 3.500,00</td>
<td>Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)</td>
</tr>
<tr>
<td></td>
<td>Fernando Fagundes Ferreira</td>
<td>Bolsa de Produtividade em Pesquisa (2007-2010)</td>
<td>01 Bolsa Nível 2</td>
<td>Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)</td>
</tr>
<tr>
<td></td>
<td>Ana Amélia Benedito Silva</td>
<td>Programa Ensinar com Pesquisa (2008-2009)</td>
<td>02 Bolsas Anuais</td>
<td>Universidade de São Paulo (USP)</td>
</tr>
<tr>
<td></td>
<td>Carlos de Brito Pereira</td>
<td>Bolsa de Iniciação Científica Santander (2008-2009)</td>
<td>02 Bolsas Anuais</td>
<td>Universidade de São Paulo (USP)</td>
</tr>
<tr>
<td></td>
<td>Flávia Mori Sarti Machado</td>
<td>Bolsa Institucional de Iniciação Científica (2006-2007)</td>
<td>01 Bolsa Anual</td>
<td>Universidade de São Paulo (USP)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programa Ensinar com Pesquisa (2007-2008)</td>
<td>02 Bolsas Anuais</td>
<td>Universidade de São Paulo (USP)</td>
</tr>
<tr>
<td></td>
<td>Carla Morsello</td>
<td>Prêmio Conservacionistas da América Latina* (2006-2008)</td>
<td>US$ 20.000,00</td>
<td>The Overbrook Foundation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bolsas de Mestrado (PROCAM) (2008-2010)</td>
<td>2 Bolsas</td>
<td>FAPESP</td>
</tr>
<tr>
<td></td>
<td>Cristina Adams</td>
<td>Bolsa de Iniciação Científica Santander (2008-2009)</td>
<td>01 Bolsa Anual</td>
<td>Universidade de São Paulo (USP)</td>
</tr>
</tbody>
</table>

(*) Prêmio de categoria Award, que pode ser classificado como bolsa ou financiamento à pesquisa, pois serve a ambos propósitos.

Quatro (4) docentes apresentam experiência de orientação de alunos de pós-graduação em outros programas, sendo que um (1) docente apresenta orientação pontual em andamento de aluno de mestrado em programa de pós-graduação interdisciplinar da Universidade de São Paulo (programa com conceito 4 na CAPES), um (1) docente apresenta credenciamento como orientador pleno de mestrado e doutorado em programa de pós-graduação interdisciplinar da Universidade de São Paulo (programa com conceito 5 na CAPES) e dois (2) docentes apresentam orientações
pontuais de doutorado em programas de pós-graduação em Física da Universidade Estadual Paulista Júlio de Mesquita Filho e Universidade de São Paulo, apresentando conceitos 6 e 7 na CAPES, respectivamente (vide Quadro de Docentes do Programa a seguir). Dois docentes realizam co-orientações informais de alunos no mestrado no Departamento de Ecologia do Instituto de Biociências (IB-USP).
3.1.6. Quadro de Docentes do Programa

<table>
<thead>
<tr>
<th>Área de Concentração</th>
<th>Docente</th>
<th>Participação em Outros Programas de Pós-Graduação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sistemas Complexos</td>
<td>Ana Amélia Benedito Silva</td>
<td></td>
</tr>
<tr>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td></td>
</tr>
</tbody>
</table>
| | Fernando Fagundes Ferreira | Programa de Pós-Graduação em Física
Nível: Doutorado (Orientação Pontual)
Nota do Programa: 6
Unidade de Ensino: Instituto de Física Teórica
Instituição: Universidade Estadual Paulista Júlio de Mesquita Filho |
| | Renato Vicente | Programa de Pós-Graduação em Física
Nível: Doutorado (Orientação Pontual)
Nota do Programa: 7
Unidade de Ensino: Instituto de Física
Instituição: Universidade de São Paulo |
| | Carla Morsello | Programa de Pós-Graduação em Ciência Ambiental (PROCAM/USP)
Nível: Mestrado e Doutorado (Credenciamento Pleno)
Nota do Programa: 5
Unidade de Ensino: Pró-Reitoria de Pós-Graduação
Instituição: Universidade de São Paulo |
| | Carlos de Brito Pereira | |
| | Cristina Adams | |
| | Fernando de Souza Coelho | |
| | Flávia Mori Sarti Machado | Programa de Pós-Graduação em Nutrição Humana Aplicada (PRONUT/USP)
Nível: Mestrado (Orientação Pontual)
Nota do Programa: 4
Unidade de Ensino: Faculdade de Ciências Farmacêuticas, Faculdade de Economia, Administração e Contabilidade e Faculdade de Saúde Pública
Instituição: Universidade de São Paulo |
| | Francisco Javier Sebastian Mendizabal Alvarez | |
| | Paulo Antonio de Almeida Sinisgalli | |
Os docentes orientadores do programa da área de concentração em Sistemas Complexos, segundo linhas de pesquisa e áreas de atuação, são apresentados a seguir (Quadro de Orientadores do Programa).

3.1.7. Quadro de Orientadores do Programa

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Áreas de Atuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentos de Sistemas Complexos</td>
<td>Ana Amélia Benedito Silva</td>
<td>Saúde Pública</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ritmos Biológicos</td>
</tr>
<tr>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td>Física Estatística</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dinâmica de Opiniões</td>
</tr>
<tr>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td>Física Estatística</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Métodos Matemáticos e Computacionais</td>
</tr>
<tr>
<td></td>
<td>Fernando Fagundes Ferreira</td>
<td>Física Estatística</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Métodos Matemáticos e Computacionais</td>
</tr>
<tr>
<td></td>
<td>Renato Vicente</td>
<td>Física Estatística</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Métodos Matemáticos e Computacionais</td>
</tr>
<tr>
<td>Ciências Sociais e Ambientais Aplicadas</td>
<td>Carla Morsello</td>
<td>Ecologia Humana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conservação Biológica</td>
</tr>
<tr>
<td></td>
<td>Carlos de Brito Pereira</td>
<td>Economia Aplicada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marketing</td>
</tr>
<tr>
<td></td>
<td>Cristina Adams</td>
<td>Ecologia Humana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antropologia Ecológica</td>
</tr>
<tr>
<td></td>
<td>Fernando de Souza Coelho</td>
<td>Gestão</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Administração Pública</td>
</tr>
<tr>
<td></td>
<td>Flávia Mori Sarti Machado</td>
<td>Economia Aplicada</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Saúde Pública</td>
</tr>
<tr>
<td></td>
<td>Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>Gestão</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marketing</td>
</tr>
<tr>
<td></td>
<td>Paulo Antonio de Almeida Sinisgalli</td>
<td>Gestão</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antropologia Econômica</td>
</tr>
</tbody>
</table>
3.2. Atividade Docente

O corpo docente do programa proposto deve atuar na oferta de disciplinas obrigatórias e disciplinas optativas que compõem a estrutura curricular apresentada, sendo alocadas disciplinas aos docentes conforme sua experiência em docência e pesquisa nos temas abordados.

As disciplinas ofertadas na estrutura curricular são compartilhadas por, no mínimo, dois docentes responsáveis, de forma possibilitar participação da totalidade do corpo docente nas atividades de ensino, sem exceder a carga horária máxima por semestre recomendada na EACH (vide Quadro Resumo das Disciplinas do Programa a seguir).

Como anteriormente apresentado, há previsão de expansão do número de docentes no programa de pós-graduação pela integração de novos pesquisadores em curto prazo – em, no máximo, dois anos, o programa de pós-graduação de Modelagem de Sistemas Complexos deve alcançar um corpo docente composto por, no mínimo, vinte (20) participantes, entre docentes da unidade e colaboradores – o que deve influenciar a carga horária dedicada às disciplinas de pós-graduação.
3.2.1. Quadro Resumo das Disciplinas do Programa

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Sigla</th>
<th>Nome da Disciplina</th>
<th>Docentes Responsáveis</th>
<th>CH</th>
<th>DS</th>
<th>AT</th>
<th>AP</th>
<th>ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentos de Sistemas Complexos</td>
<td>SCX5000</td>
<td>Métodos Matemáticos e de Computação I</td>
<td>André Cavalcanti Rocha Martins Ana Amélia Benedito Silva</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5001</td>
<td>Métodos Matemáticos e de Computação II</td>
<td>Renato Vicente Camilo Rodrigues Neto Fernando Fagundes Ferreira</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5002</td>
<td>Sistemas Complexos I (*)</td>
<td>Renato Vicente Fernando Fagundes Ferreira</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5003</td>
<td>Sistemas Complexos II</td>
<td>Renato Vicente Camilo Rodrigues Neto</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5004</td>
<td>Simulação de Sistemas Complexos I (*)</td>
<td>André Cavalcanti Rocha Martins Camilo Rodrigues Neto</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5005</td>
<td>Simulação de Sistemas Complexos II</td>
<td>André Cavalcanti Rocha Martins Ana Amélia Benedito Silva Fernando Fagundes Ferreira</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td>Ciências Sociais e Ambientais Aplicadas</td>
<td>SCX5010</td>
<td>Economia Aplicada a Sistemas Complexos (*)</td>
<td>Carlos de Brito Pereira Flávia Mori Sarti Machado Paulo Antonio de Almeida Sinisgalli</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5011</td>
<td>Administração Aplicada a Sistemas Complexos (*)</td>
<td>Fernando de Souza Coelho Carlos de Brito Pereira Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5012</td>
<td>Ecologia Humana e Antropologia Econômica I</td>
<td>Carla Morsello Cristina Adams Paulo Antonio de Almeida Sinisgalli</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5013</td>
<td>Ecologia Humana e Antropologia Econômica II</td>
<td>Carla Morsello Cristina Adams</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5014</td>
<td>Sistemas de Marketing</td>
<td>Fernando de Souza Coelho Carlos de Brito Pereira Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>SCX5015</td>
<td>Tópicos Especiais em Economia Aplicada</td>
<td>Fernando de Souza Coelho Flávia Mori Sarti Machado</td>
<td>10</td>
<td>15</td>
<td>4</td>
<td>--</td>
<td>6</td>
</tr>
</tbody>
</table>

Legenda: (*) Disciplina obrigatória; CH = Carga horária semanal; DS = Duração em semanas; AT = Créditos de Aulas Teóricas; AP = Créditos de Aulas Práticas; ES = Créditos de Horas de Estudo.
3.3. Participação Docente em Pesquisa e Desenvolvimento de Projetos

O corpo docente do programa de pós-graduação de Modelagem de Sistemas Complexos tem desenvolvido diversos projetos de pesquisa, cujos conteúdos e resultados em publicações refletem o caráter interdisciplinar dos pesquisadores participantes.

3.3.1. Projetos de Pesquisa em Andamento dos Docentes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos

<table>
<thead>
<tr>
<th>Nome do projeto</th>
<th>Dinâmica de agentes sociais e biológicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linha de Pesquisa</td>
<td>Fundamentos de Sistemas Complexos</td>
</tr>
<tr>
<td>Ano de início</td>
<td>2007</td>
</tr>
<tr>
<td>Descrição</td>
<td>O projeto utiliza abordagem de simulação de agentes artificiais para estudar diferentes características e interações referentes a agentes individuais que conduzem a diversas conseqüências nas sociedades que compõem. Dinâmica de opiniões é uma das linhas de pesquisa do projeto, que busca entender como características de grandes grupos de indivíduos surgem como conseqüência de regras simples sobre processos de mudança de opinião e influência mútua entre agentes. Fenômenos como surgimento de consensos, emergência de posições extremas, distribuições de votos e tendências de eleições em terminarem próximas a 50% com mais frequência do que seria esperado são características já previstas por diferentes modelos. Outra linha de pesquisa refere-se à observação da dinâmica de redes de agentes, como, por exemplo, redes de relações de comércio exterior entre países, especialmente em termos de trocas de bens básicos (commodities), principalmente itens alimentares. Uma terceira linha de pesquisa busca utilizar modelos de simulação por agentes para modelar o ciclo de vida (de negócio) e a segmentação (distribuição dos consumidores segundo suas preferências) no setor de bares e restaurantes. O presente projeto tem como objetivo desenvolver o conhecimento na área, explorando a aplicação de métodos Bayesianos no desenvolvimento de modelos de dinâmica de opiniões e redes de agentes, assim como observar dinâmica cultural e de linguagem e comportamento de agentes biológicos.</td>
</tr>
</tbody>
</table>
| **Docentes Participantes** | André Cavalcanti Rocha Martins
Camilo Rodrigues Neto
Carlos de Brito Pereira
Flávia Mori Sarti Machado
Francisco Javier Sebastian Mendizabal Alvarez
Renato Vicente |
<table>
<thead>
<tr>
<th>Nome do projeto</th>
<th>Modelo de parâmetros aleatórios para séries temporais não estacionárias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linha de Pesquisa</td>
<td>Fundamentos de Sistemas Complexos</td>
</tr>
<tr>
<td>Ano de início</td>
<td>2006</td>
</tr>
<tr>
<td>Descrição</td>
<td>O problema geral de determinação da estrutura da matriz de covariância é um problema importante em várias áreas. Quando o número de variáveis é muito grande, frequentemente é possível se reduzir a dimensionalidade do problema e observou-se que uma parcela significativa dos auto-valores de matrizes de covariância podem ser entendidos como ruído e modelados com o uso dos métodos da Teoria de Matrizes Aleatórias. No entanto, foram também observadas evidências de que o comportamento dos autovalores varia com o tempo, que seria esperado, já que as séries financeiras são não-estacionárias. De forma a modelar este problema, propus uma parametrização para a matriz de covariância que permite a introdução de não-estacionariedades no modelo de forma simples, automaticamente respeitando-se as propriedades da matriz. Simulações do modelo proposto mostraram que os autovalores obtidos com este modelo correspondem melhor aos autovalores de séries reais que aqueles obtidos a partir de Matrizes Aleatórias.</td>
</tr>
</tbody>
</table>
| **Docentes Participantes** | André Cavalcanti Rocha Martins
Camilo Rodrigues Neto |
<table>
<thead>
<tr>
<th>Nome do projeto</th>
<th>Modelagem de sistemas complexos adaptativos, complexidade computacional, modelagem e análise de dados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linha de Pesquisa</td>
<td>Fundamentos de Sistemas Complexos</td>
</tr>
<tr>
<td>Ano de início</td>
<td>2006</td>
</tr>
</tbody>
</table>

Descrição

O presente projeto versa sobre quatro propostas diferentes para estudar sistemas complexos adaptativos. Caracteriza-se pela busca da modelagem de problemas interdisciplinares que podem ser tratados analiticamente com ferramentas típicas de Física Estatística. Além disso, para verificar resultados analíticos ou abordar aspectos mais complicados, utiliza-se o uso de simulações estocásticas ou técnicas baseadas em agentes que podem interagir através de redes sociais representadas por grafos ou redes complexas. Os agentes têm um nível cognitivo limitado e os dados produzidos ao longo da interação serão analisados com o auxílio de redes neurais (reconhecimento de padrão) e modelos gerais lineares (regressão) ou expoentes que capturam o tipo de complexidades dos sinais como expoente de Hurst, de Hölder (multifractais), Lyapunov (séries caóticas), medidas de estacionaridade e linearidade, para citar alguns. O projeto está focado no entendimento dos mecanismos microscópicos responsáveis pelos fenômenos emergentes observados no nível macroscópico do sistema.

Docentes Participantes

Ana Amélia Benedito Silva
André Cavalcanti Rocha Martins
Camilo Rodrigues Neto
Carlos de Brito Pereira
Fernando Fagundes Ferreira
<table>
<thead>
<tr>
<th>Nome do projeto</th>
<th>Ecologia humana e conservação de florestas tropicais</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linha de Pesquisa</td>
<td>Ciências Sociais e Ambientais Aplicadas</td>
</tr>
<tr>
<td>Ano de início</td>
<td>2003</td>
</tr>
</tbody>
</table>
| Descrição | Os sistemas de subsistência das populações de pequena escala habitantes de florestas tropicais vêm passando por transformações marcantes nas últimas décadas, provocadas principalmente pela incorporação crescente à economia de mercado. O papel das políticas de conservação e projetos de desenvolvimento local não pode ser negligenciado. As transformações sofridas pelos sistemas podem ser detectadas no uso dos recursos naturais (impactos na estrutura, composição, processos de sucessão ecológica e diversidade dos ecossistemas) e modos de vida das populações (uso de recursos, instituições tradicionais e implicações para a saúde e segurança alimentar, incluindo transição nutricional). O projeto engloba vários aspectos que buscam analisar o cenário vigente sob uma abordagem interdisciplinar, incluindo ferramental teórico-metodológico da Ecologia, Economia e Antropologia. Subprojetos:
1. *Transition of shifting cultivation systems at the agriculture/forest frontiers – sustainability or demise?* (projeto internacional sob coordenação de Ole Mertz com participação de Cristina Adams);
2. Sucessão ecológica em roças abandonadas por populações tradicionais no Vale do Ribeira, São Paulo (coordenação de Eduardo Gomes com participação de Cristina Adams);
3. Memória social e ecologia histórica: a agricultura de coivara das populações quilombolas do Vale do Ribeira e sua relação com a formação da Mata Atlântica local (coordenação de Rui Murrieta com participação de Cristina Adams);
4. Parcerias Florestais: efeitos socioeconômicos e ambientais da comercialização de produtos florestais não madeireiros na conservação florestal e desenvolvimento local de grupos extrativistas e indígenas da Amazônia brasileira (coordenação de Carla Morsello e participação de Flávia Mori Sarti Machado), em particular, diferentes formas de diversificação da produção, indicadores de efeitos para estabelecimento de processos de monitoramento e consequências para instituições tradicionais locais, como as estratégias de compartilhamento (veja www.parceriasflorestais.org). |
| Docentes Participantes | Carla Morsello
Cristina Adams
Flávia Mori Sarti Machado
Paulo Antonio de Almeida Sinisgalli |
<table>
<thead>
<tr>
<th>Nome do projeto</th>
<th>Simulação de Agentes em Políticas Públicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linha de Pesquisa</td>
<td>Fundamentos de Sistemas Complexos</td>
</tr>
<tr>
<td>Ano de início</td>
<td>2007</td>
</tr>
<tr>
<td>Descrição</td>
<td>O projeto busca a exploração do uso de modelos de simulação de agentes para auxílio a decisão em política pública. Como preparação para aplicações no mundo real simularemos uma sociedade artificial (Sugascape) e uma economia artificial (TradeWorld) propostas na literatura com a inclusão de agentes de política pública. Como segunda etapa, simularemos modelos de regulação estatal, em particular, estamos interessados no mercado de ensino superior no Brasil.</td>
</tr>
</tbody>
</table>
| **Docentes Participantes** | Fernando de Souza Coelho
Renato Vicente |
Os docentes participantes do programa de pós-graduação de Modelagem de Sistemas Complexos obtiveram, ao longo dos últimos anos, diversos tipos de financiamentos e auxílios à pesquisa em diferentes agências de fomento, de forma a apoiar as atividades de pesquisa a desenvolvidas na Escola de Artes, Ciências e Humanidades.

3.3.2. Financiamentos e Auxílios à Pesquisa Vigentes

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Tipo de Financiamento (Período)</th>
<th>Valor</th>
<th>Agência Financiadora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentos de Sistemas Complexos</td>
<td>Renato Vicente</td>
<td>Auxílio à Pesquisa (2008-2009)</td>
<td>R$ 45.200,00</td>
<td>Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Projeto 1 (2008-2009)</td>
<td>R$ 34.000,00</td>
<td>Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)</td>
</tr>
<tr>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td>Auxílio à Pesquisa (2008-2009)</td>
<td>R$ 20.000,00</td>
<td>Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Projeto 1 (2008-2009)</td>
<td>R$ 6.000,00</td>
<td>Universidade de São Paulo (USP)</td>
</tr>
<tr>
<td>Ciências Sociais e Ambientais Aplicadas</td>
<td>Carla Morsello</td>
<td>Projeto 1 (2008-2009)</td>
<td>R$ 3.000,00</td>
<td>Universidade de São Paulo (USP)</td>
</tr>
</tbody>
</table>
4. **Corpo Discente**

4.1. **Perfil do Ingressante**

O perfil de formação no ensino superior dos potenciais candidatos ao ingresso no programa de pós-graduação em Modelagem de Sistemas Complexos abarca praticamente a totalidade dos profissionais interessados em novas alternativas de modelagem de sistemas biológicos, socioeconômicos e organizações.

O curso é planejado de forma a permitir que os egressos de cursos de bacharelado ou de cursos tecnológicos, tanto de áreas exatas (por exemplo, Física, Matemática, Estatística e Engenharia), quanto de áreas de ciências sociais aplicadas (como Economia, Gestão e Administração) ou de ciências biológicas e ambientais façam pontes entre a modelagem computacional e quantitativa e os sistemas complexos que cada uma destas áreas estudam.

Em última instância, o programa deve atrair profissionais com habilidade para pesquisa e inovação na abordagem técnica e instrumental de problemas existentes na interface entre áreas do conhecimento.

O ingresso dos alunos no programa de pós-graduação em Modelagem de Sistemas Complexos será realizado via aprovação em processo seletivo próprio, composto por duas etapas:

1. Aplicação de prova eliminatória sobre temas em métodos estatísticos e matemáticos básicos e metodologia de pesquisa;
2. Apresentação de resultado de uma prova de proficiência em língua inglesa, realizada em instituição de renome, conforme especificado nas normas do programa de pós-graduação.

4.2. **Perfil do Egresso**

Os egressos do programa de pós-graduação proposto serão caracterizados pela capacidade de propor questões e aplicar idéias, modelos e ferramentas computacionais típicos das Ciências Exatas para a solução de problemas específicos em Ciências Sociais aplicadas, Ecologia e Gestão, bem como áreas de interface entre estas. Poderão, portanto, adotar uma ótica diferenciada na resolução de tais problemas, pela adoção de instrumental quantitativo refinado, permitindo a racionalização de processos de tomada de decisão, ou gerando novas abordagens para a investigação de problemas científicos e práticos.
O perfil dos profissionais egressos do programa de pós-graduação em Modelagem de Sistemas Complexos deve resultar em, pelo menos, duas diferentes áreas de especialização:

1. Pesquisadores especialistas em problemas teóricos de modelagem;

2. Pesquisadores especialistas em aplicações de modelagem sobre questões setoriais.

Os temas a serem estudados pelos estudantes de pós-graduação em Modelagem de Sistemas Complexos podem ser de ao menos de dois tipos.

Em primeiro lugar, questões de natureza prática ou de ciência aplicada, tal como a tomada de decisões financeiras a partir de uma abordagem Bayesiana; o desenvolvimento de simulações de agentes para análise de políticas públicas ou análise do comportamento de ecossistemas frente a mudanças ambientais; a formulação de modelos dinâmicos ao comportamento de séries temporais biológicas ou o estudo de instituições econômicas pré-capitalistas. Nesse sentido, o estudo da dinâmica de opiniões apresenta crescente interesse nas áreas de Marketing e das Ciências Políticas, sendo um tema atualmente analisado por meio de aplicação de técnicas estatísticas e físicas.

Em segundo lugar, há questões de apelo intrinsecamente acadêmico no desenvolvimento de modelos com capacidade de obter propriedades macroscópicas (macroeconomia) em sistemas sociais, a partir da modelagem microscópica dos agentes (microeconomia), ou, alternativamente, da evolução de sistemas culturais ou sócio-naturais.

O programa de pós-graduação direciona-se, assim, aos indivíduos interessados no estudo de fenômenos emergentes relativos às diversas áreas de aplicação aqui mencionadas, cujo surgimento não ocorre de forma trivial a partir da soma das ações individuais, à semelhança do que ocorre em Física.

7 Veja descrição de alguns exemplos de temas de dissertação que poderiam ser orientados no âmbito do mestrado em Modelagem de Sistemas Complexos no Anexo I.
5. **Produção Intelectual**

O corpo docente do programa de pós-graduação de Modelagem de Sistemas Complexos apresenta significativo volume de publicações, tanto sob forma de artigos em periódicos de alto impacto, quanto em livros organizados e capítulos de livros publicados.

A criação do programa de pós-graduação possibilitará elevação substancial da produção acadêmica dos docentes participantes. Há uma expectativa de que, em um período de quatro a cinco anos, registre-se um aumento entre 30% e 50% no volume de publicações científicas dos docentes. Adicionalmente, em termos qualitativos, pode-se também esperar um aumento da porcentagem de publicações dos docentes em periódicos de alto impacto internacional (superior a 1,5), tendo em vista a maior abrangência dos artigos científicos resultantes das linhas de pesquisa interdisciplinares propostas pelo programa, assim como do uso de ferramentas analíticas mais refinadas.

Destaca-se, a seguir, a produção intelectual do corpo docente permanente do programa referente aos últimos três (3) anos.

5.1. **Publicações qualificadas dos docentes permanentes do programa**

A distribuição de publicações qualificadas em relação ao corpo docente do programa de pós-graduação proposto é bastante adequada, verificando-se ampla contribuição de pesquisadores de ambas linhas de pesquisa.

Pode-se observar (Quadro 5.1.2) que o volume da produção intelectual do corpo docente concentra-se em artigos publicados em periódicos de alto impacto internacional (produção de 1,92 artigos em periódicos com fator de impacto superior a 0,5 por docente permanente), sendo uma produção bastante bem distribuída entre os docentes permanentes do programa (83% dos docentes apresentam publicações em periódicos com fator de impacto superior a 0,5).

Destaca-se a existência de novas publicações em fase de produção e avaliação por pares em periódicos de alto impacto em âmbito internacional, que devem brevemente ser incluídas na produção acadêmica dos docentes – sendo, em sua maioria, frutos de colaborações entre pesquisadores participantes de ambas linhas de pesquisa do programa, refletindo o caráter eminentemente interdisciplinar da proposta.
5.1.1. Produção Completa dos Docentes Permanentes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos no Triênio 2006-2008

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Livros</th>
<th>Capítulos</th>
<th>Artigos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nacionais</td>
</tr>
<tr>
<td>Fundamentos de Sistemas Complexos</td>
<td>Ana Amélia Benedito Silva</td>
<td>--</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Fernando Fagundes Ferreira</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Renato Vicente</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ciências Sociais e Ambientais Aplicadas</td>
<td>Carla Morsello</td>
<td>1</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Carlos de Brito Pereira</td>
<td>--</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Cristina Adams</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Fernando de Souza Coelho</td>
<td>--</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Flávia Mori Sarti Machado</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>2</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Paulo Antonio de Almeida Sinigallini</td>
<td>1</td>
<td>--</td>
<td>2</td>
</tr>
</tbody>
</table>
5.1.2. Qualificação da Produção Intelectual dos Docentes Permanentes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos no Triênio 2006-2008

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Tipo de Publicação (*)</th>
<th>Fator de Impacto</th>
<th>Periódico</th>
<th>Capítulo de Livro</th>
<th>Livro Nacional</th>
<th>Livro Internacional</th>
<th>Artigo em Anais</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
<td>VI</td>
<td>VII</td>
</tr>
<tr>
<td>Fator de Impacto</td>
<td>Flí≥0,5</td>
<td>0,5>Flí≥0,25</td>
<td>Flí<0,25</td>
<td>Scielo</td>
<td>ISSN</td>
<td>Scielo</td>
<td>ISSN</td>
</tr>
<tr>
<td>Fundamentos de Sistemas Complexos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ana Amélia Benedito Silva</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>André Cavalcanti Rocha Martins</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Camilo Rodrigues Neto</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fernando Fagundes Ferreira</td>
<td>2</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Renato Vicente</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ciências Sociais e Ambientais Aplicadas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carla Morsello</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Carlos de Brito Pereira</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cristina Adams</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Fernando de Souza Coelho</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Flávia Mori Sarti Machado</td>
<td>3</td>
<td>--</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>--</td>
</tr>
<tr>
<td>Francisco Javier Mendizabal Alvarez</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Paulo Antonio de Almeida Sinigalli</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
</tr>
<tr>
<td>Produção Intelectual Total</td>
<td>23</td>
<td>1</td>
<td>--</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Produção Intelectual por Docente Permanente</td>
<td>1,92</td>
<td>0,08</td>
<td>--</td>
<td>0,33</td>
<td>0,58</td>
<td>0,83</td>
<td>0,50</td>
</tr>
<tr>
<td>Distribuição</td>
<td>83%</td>
<td>8%</td>
<td>0%</td>
<td>17%</td>
<td>42%</td>
<td>33%</td>
<td>42%</td>
</tr>
</tbody>
</table>

(*) Classificação adaptada a partir dos critérios CAPES nos quesitos referentes a periódicos, utilizada para composição de nota de credenciamento de docentes orientadores no presente programa de pós-graduação (vide Anexo II - Regulamento).
5.1.3. Pontuação de Credenciamento pela Produção Intelectual dos Docentes Permanentes do Programa de Pós-Graduação de Modelagem de Sistemas Complexos no Triênio 2006-2008

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Pontuação por Tipo de Publicação (*)</th>
<th>Pontuação de Credenciamento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Fundamentos de Sistemas Complexos</td>
<td>Ana Amélia Benedito Silva</td>
<td>30</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td>24</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td>12</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Fernando Fagundes Ferreira</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Renato Vicente</td>
<td>12</td>
<td>--</td>
</tr>
<tr>
<td>Ciências Sociais e Ambientais Aplicadas</td>
<td>Carla Morsello</td>
<td>12</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Carlos de Brito Pereira</td>
<td>6</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Cristina Adams</td>
<td>6</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Fernando de Souza Coelho</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Flávia Mori Sarti Machado</td>
<td>18</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Paulo Antonio de Almeida Sinisgalli</td>
<td>6</td>
<td>--</td>
</tr>
</tbody>
</table>

(*) Pontuação utilizada para composição de nota de credenciamento de docentes orientadores no presente programa de pós-graduação (vide Anexo II - Regulamento).

5.2. Participação em Revisões de Periódicos

Os docentes também têm atuado como pareceristas para periódicos nacionais e internacionais, em várias áreas do conhecimento e nas duas linhas de pesquisa do programa, demonstrando a inserção na pesquisa científica nacional e internacional. Destaca-se além do número, a qualidade das publicações revisadas, muitas das quais se inserem na mais alta categoria de classificação da CAPES.
5.2.1. Participação dos Docentes em Revisões de Periódicos

<table>
<thead>
<tr>
<th>Linha de Pesquisa</th>
<th>Docente</th>
<th>Periódicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentos de Sistemas Complexos</td>
<td>Ana Amélia Benedito Silva</td>
<td>• Revista de Etiologia (São Paulo)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Revista de Saúde Pública / Journal of Public Health</td>
</tr>
<tr>
<td></td>
<td>André Cavalcanti Rocha Martins</td>
<td>• JASSS - Journal of Artificial Societies and Social Simulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Judgment and Decision Making</td>
</tr>
<tr>
<td></td>
<td>Camilo Rodrigues Neto</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fernando Fagundes Ferreira</td>
<td>• Energy Economics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physica A</td>
</tr>
<tr>
<td></td>
<td>Renato Vicente</td>
<td>• IEEE Transactions on Information Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Journal of Statistical Mechanics. Theory and Experiment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Physica A</td>
</tr>
<tr>
<td>Ciências Sociais e Ambientais Aplicadas</td>
<td>Carla Morsello</td>
<td>• Acta Amazonica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ambiente e Sociedade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Biota Neotropica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Boletim do Museu Paraense Emílio Goeldi. Antropologia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Conservation Ecology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Development and Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ecology and Society</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Forest Ecology and Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Revista Floresta</td>
</tr>
<tr>
<td></td>
<td>Carlos de Brito Pereira</td>
<td>• Leituras de Economia Política (Unicamp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• REAd - Revista Eletrônica de Administração</td>
</tr>
<tr>
<td></td>
<td>Cristina Adams</td>
<td>• Ambiente e Sociedade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Interciencia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Revista de Antropologia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tipití</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Acta Botanica Brasília</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Human Ecology</td>
</tr>
<tr>
<td></td>
<td>Fernando de Souza Coelho</td>
<td>• RAC – Revista de Administração Contemporânea</td>
</tr>
<tr>
<td></td>
<td>Flávia Mori Sarti Machado</td>
<td>• Revista da Associação Médica Brasileira</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Revista Panamericana de Salud Pública / Pan American Journal of Public Health</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Revista de Saúde Pública / Journal of Public Health</td>
</tr>
<tr>
<td></td>
<td>Francisco Javier Sebastian Mendizabal Alvarez</td>
<td>• REGE – Revista de Gestão USP</td>
</tr>
</tbody>
</table>
6. **Inserção Social**

A proposta de programa de pós-graduação em Modelagem de Sistemas Complexos apresenta significativo potencial de inserção social, especialmente no que concerne aos impactos sociais e tecnológico-econômicos derivados de suas pesquisas. A consolidação efetiva da interdisciplinaridade na formação dos egressos do programa deve garantir flexibilidade no emprego de conceitos e instrumentos de diferentes áreas na composição de soluções inovadoras ao setor público ou privado, bem como inovar na realização de pesquisas acadêmicas interdisciplinares no país.

Em termos de impactos sociais da proposta, espera-se que os egressos do programa constituam corpo de pesquisadores de especialização valiosa à administração pública e setores de atividade estratégicos da produção nacional, buscando soluções inovadoras em termos de processos decisórios que busquem melhoria da produtividade e promoção do bem-estar social.

A formação de pesquisadores especialmente interessados na resolução de problemas recorrentes da sociedade brasileira deve interessar a diversos setores-chave da administração pública direta e indireta, a partir do empenho na construção de políticas públicas pautadas em parâmetros de otimização no uso dos recursos públicos para maximização dos resultados em desenvolvimento social e econômico.

No tocante aos impactos tecnológico-econômicos, espera-se que os resultados de estudos e pesquisas gerados no âmbito do programa de pós-graduação proposto sejam amplamente dissemelados para produção de novas tecnologias que resultem em melhoria da produtividade e promoção de crescimento e desenvolvimento econômico nacional. Particularmente, destaca-se a possibilidade de desenvolvimento de técnicas de tratamento de dados e instrumentos de apoio a processos decisórios estratégicos que utilizem modelagem em sistemas complexos.

6.1. **Inserção e Impacto no Contexto Regional e Internacional**

Destaca-se que, no Brasil, não há programas de pós-graduação equivalentes à proposta apresentada. Nenhum dos programas de pós-graduação interdisciplinar analisados poderia ser considerado similar em conteúdo, área de concentração, linhas de pesquisa ou formação acadêmica em relação ao programa de pós-graduação de Modelagem de Sistemas Complexos.

Deve-se frisar que o presente programa não deve ser visto como uma pós-graduação em modelagem computacional, tendo em vista que as linhas de pesquisa dos docentes do programa apontam para o uso de computação como ferramenta – não como objeto de estudo – empregada apenas para simulação ou análise de dados. O foco proposto ao programa de pós-graduação está na
utilização de idéias de sistemas complexos no estilo proposto pelo Santa Fe Institute (www.santafe.edu).

Em relação aos programas interdisciplinares nas áreas de Ciências Ambientais e Ciências Sociais Aplicadas, existem alguns pontos de contato com determinados cursos de pós-graduação, como, por exemplo, no caso do Programa de Pós-Graduação em Modelagem em Ciências da Terra e do Ambiente da Universidade Federal de Feira de Santana, assim como uma série de programas ligados à área ambiental em algumas universidade do país. O presente programa de pós-graduação, contudo, difere de tais cursos devido ao denso caráter de formação interdisciplinar que se buscou imprimir no programa de pós-graduação em Modelagem de Sistemas Complexos, tanto nos princípios e ferramentas computacionais de análise, quanto na formação teórica diferenciada em áreas de interação entre as Ciências Sociais e Ambientais.

Destaca-se, outrossim, as características singulares da EACH como instituição acadêmica ímpar para a criação de programa de pós-graduação com uma proposta interdisciplinar inovadora no contexto nacional, tendo em vista que a unidade foi criada com vocação para o desenvolvimento de programas acadêmicos interdisciplinares, reunindo em uma única unidade pesquisadores com variados perfis de formação, muitos dos quais apresentam formação em mais de uma área do conhecimento. É justamente a riqueza intelectual heterogênea por natureza da escola que o programa de pós-graduação proposto deseja incorporar e potencializar, de forma a promover competitividade intelectual em nível internacional e gerar resultados de interesse acadêmico e social.

A inserção social do programa de pós-graduação de Modelagem de Sistemas Complexos no contexto mundial apresenta plena integração com o conteúdo acadêmico proposto em alguns institutos de pesquisa e programas de pós-graduação de diferentes instituições, tais como:

1. Santa Fe Institute (http://www.santafe.edu), sediado nos Estados Unidos, do qual participam pesquisadores de diversos países;
3. Complexity Research Group, London School of Economics (LSE) (http://www.psych.lse.ac.uk/complexity/), sediado no Reino Unido;

A proposta de mestrado acadêmico em Modelagem de Sistemas Complexos, devido à semelhança de conteúdo com os programas das instituições mencionadas acima —particularmente o Santa Fe Institute e a London School of Economics—, apresenta significativo potencial para estabelecimento de relações institucionais com organizações de renome internacional.
6.2. **Integração e Cooperação com Outros Programas**

O programa de pós-graduação em Modelagem de Sistemas Complexos pretende estabelecer parcerias com entidades de ensino e pesquisa, cujas áreas de concentração apresentem convergência em relação aos temas de estudo propostos, conforme detalhado nas seções a seguir.

6.2.1. Parcerias

O programa proposto apresenta ampla interface de cooperação com instituições de ensino com significativa tradição na formação de quadros profissionais de alta qualidade: Departamento de Economia e Departamento de Administração da Faculdade de Economia, Administração e Contabilidade da Universidade de São Paulo (FEA-USP), Instituto de Física da Universidade de São Paulo (IF-USP), Instituto de Física Teórica da Universidade Estadual Paulista Júlio de Mesquita Filho (IFT-UNESP) e Instituto de Biociências da Universidade de São Paulo (IB-USP).

A cooperação entre as unidades mencionadas será estabelecida pela participação de docentes no programa de pós-graduação em Modelagem de Sistemas Complexos. Destaca-se que já houve manifestação de interesse em participação por parte dos seguintes docentes: Prof.Dr.Antônio Carlos Coelho Campino (professor titular do Departamento de Economia – FEA-USP) e Prof.Dr.Nestor Felipe Caticha Alfonso (professor titular do Departamento de Física Geral – IF-USP).

6.2.2. Cooperação e Intercâmbio Internacional

No momento atual, docentes do programa de pós-graduação proposto têm mantido contatos de colaboração acadêmica com algumas entidades de ensino e pesquisa estrangeiros, entre as quais se destacam aquelas a seguir.

1. **International Centre for Theoretical Physics** (Trieste, Itália), a partir de contato do prof.Fernando Fagundes Ferreira com a profa.Hilda Cerdeira;

Destaca-se o desejo de estabelecer vínculo de cooperação e intercâmbio com instituições internacionais de pesquisa interdisciplinar anteriormente destacadas, como o *Santa Fe Institute* (New Mexico, EUA), reconhecido centro de educação e pesquisa. O interesse do instituto no estudo de sistemas complexos adaptativos em relação a questões ambientais, tecnológicas, econômicas e políticas, bem como os resultados em termos de produção científica, o tornam um exemplo impar de pesquisa de alta qualidade baseada em integração interdisciplinar.

6.3. **Visibilidade e Transparência das Atividades do Programa de Pós-Graduação**

O programa de pós-graduação de Modelagem de Sistemas Complexos buscará promover ampla visibilidade à sua atuação em atividades de ensino, pesquisa e extensão pela contínua divulgação de resultados, propostas de projetos e produção acadêmica, cujos conteúdos já têm sido disponibilizados no portal institucional do grupo de pesquisa GRIFE (www.each.usp.br/grife), cujo foco deverá ser ampliado após o início das atividades no programa de pós-graduação, de forma a compor site oficial direcionado à veiculação de informações relativas a publicações, eventos e indicadores de atividade do Programa de Pós-Graduação em Modelagem de Sistemas Complexos.

Informações referentes a formação de pesquisadores, projetos de pesquisa em andamento e resultados referentes à produção acadêmica do corpo docente e discente devem contribuir à transparência na condução das atividades do programa de pós-graduação proposto.
Outro instrumento de visibilidade e transparência nos indicadores de produção do corpo docente e corpo discente do programa será a inclusão das dissertações no Portal Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo, que constitui base de dados oficial de produções da pós-graduação da universidade, onde atualmente há disponibilidade de mais de 16.000 trabalhos, que podem ser consultados por tipo (tese de doutorado, dissertação de mestrado ou tese de livre-docência), área do conhecimento (humanas, exatas e biológicas) ou unidade de origem.
7. **Anexos**
Anexo I - Exemplos de Temas de Dissertação em Modelagem de Sistemas Complexos

<table>
<thead>
<tr>
<th>Tema</th>
<th>Simulação de inovações: Lançamento de novos produtos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composição de disciplinas</td>
<td>Sistemas Complexos I</td>
</tr>
<tr>
<td></td>
<td>Simulação de Sistemas Complexos I</td>
</tr>
<tr>
<td></td>
<td>Sistemas de Marketing</td>
</tr>
<tr>
<td></td>
<td>Economia Aplicada a Sistemas Complexos</td>
</tr>
<tr>
<td></td>
<td>Administração Aplicada a Sistemas Complexos</td>
</tr>
<tr>
<td>Justificativa</td>
<td>O desenvolvimento de inovações é uma área na qual abundam estudos. Porém, a</td>
</tr>
<tr>
<td></td>
<td>forma como se propaga no mercado o novo produto, após o seu lançamento,</td>
</tr>
<tr>
<td></td>
<td>ainda é baseado em dois estudos da década de 1960 (de Bass e Rogers,</td>
</tr>
<tr>
<td></td>
<td>respectivamente) como atestam os vários manuais de Marketing e Gerenciamento</td>
</tr>
<tr>
<td></td>
<td>de Produtos publicados desde então. A área de Sistemas Complexos e os</td>
</tr>
<tr>
<td></td>
<td>modelos de simulação podem contribuir para uma nova abordagem da propagação</td>
</tr>
<tr>
<td></td>
<td>de inovações em um dado mercado. Associar esses conhecimentos à abordagem</td>
</tr>
<tr>
<td></td>
<td>sistêmica do Marketing será uma contribuição relevante para as áreas de novos</td>
</tr>
<tr>
<td></td>
<td>produtos e inovação.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tema</th>
<th>Métodos quantitativos aplicados a derivativos de crédito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composição de disciplinas</td>
<td>Sistemas Complexos I</td>
</tr>
<tr>
<td></td>
<td>Métodos Matemáticos e de Computação I</td>
</tr>
<tr>
<td></td>
<td>Métodos Matemáticos e de Computação II</td>
</tr>
<tr>
<td></td>
<td>Economia Aplicada a Sistemas Complexos</td>
</tr>
<tr>
<td></td>
<td>Administração Aplicada a Sistemas Complexos</td>
</tr>
<tr>
<td>Justificativa</td>
<td>A área de derivativos de crédito tem crescido rapidamente nos últimos anos</td>
</tr>
<tr>
<td></td>
<td>em função da necessidade de mitigação de riscos relacionados a eventos de</td>
</tr>
<tr>
<td></td>
<td>inadimplência. O apreçamento de produtos derivativos requer o domínio de</td>
</tr>
<tr>
<td></td>
<td>métodos de análise de dados combinados à simulação de processos estocásticos.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tema</th>
<th>Simulação em sistemas de gestão pública</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composição de disciplinas</td>
<td>Simulação de Sistemas Complexos I</td>
</tr>
<tr>
<td></td>
<td>Sistemas Complexos I</td>
</tr>
<tr>
<td></td>
<td>Métodos Matemáticos e de Computação I</td>
</tr>
<tr>
<td></td>
<td>Administração Aplicada a Sistemas Complexos</td>
</tr>
<tr>
<td></td>
<td>Sistemas de Marketing</td>
</tr>
<tr>
<td>Justificativa</td>
<td>A possibilidade do teste em laboratório de efeitos adversos de políticas</td>
</tr>
<tr>
<td></td>
<td>públicas via simulação de agentes tem sido investigada nos últimos anos. O</td>
</tr>
<tr>
<td></td>
<td>programa de Modelagem de Sistemas Complexos possibilita de maneira única a</td>
</tr>
<tr>
<td></td>
<td>formação híbrida em métodos computacionais, paradigmas de complexidade e</td>
</tr>
<tr>
<td></td>
<td>teorias de gestão necessária para exploração desta possibilidade.</td>
</tr>
</tbody>
</table>
Avaliação econômica aplicada a políticas públicas de saúde

Composição de disciplinas
- Métodos Matemáticos e de Computação I
- Simulação de Sistemas Complexos I
- Simulação de Sistemas Complexos II
- Economia Aplicada a Sistemas Complexos
- Tópicos Especiais em Economia Aplicada

Justificativa
O uso de modelos de avaliação econômica à validação da efetividade e precificação de novos medicamentos e novas técnicas de tratamento ou detecção de patologias constitui uma prática em consolidação no âmbito das políticas públicas de saúde mundialmente. Atualmente, a análise custo-benefício e a análise custo-efetividade constituem instrumentos de avaliação indicados por diferentes agências nacionais de vigilância sanitária e farmacológica. Técnicas de modelagem e simulação, como cadeia de Markov e simulações Monte Carlo, têm sido amplamente empregadas para amparar a construção de avaliações econômicas.

Modelos aplicados à gestão de vendas

Composição de disciplinas
- Métodos Matemáticos e de Computação I
- Simulação de Sistemas Complexos I
- Sistemas de Marketing
- Economia Aplicada a Sistemas Complexos
- Administração Aplicada a Sistemas Complexos

Justificativa
A execução da gestão de vendas pressupõe conhecimento de estatísticas de vendas passadas e previsão de vendas futuras. Geralmente, são usados modelos econômétricos na previsão de vendas futuras, além de técnicas qualitativas, como método Delphi ou mera consulta às equipes de vendas. No caso, busca-se propor um avanço teórico na área, pois serão utilizadas técnicas ensinadas nas disciplinas de Simulação e Sistemas Complexos para obtenção de resultados inovadores, assim como compreender o funcionamento de Economia e Marketing na qual a gestão de vendas está inserida.

Dinâmica de opiniões em marketing / sistemas sociais

Composição de disciplinas
- Sistemas Complexos I
- Sistemas Complexos II
- Simulação de Sistemas Complexos I
- Simulação de Sistemas Complexos II
- Sistemas de Marketing OU Ecologia Humana e Antropologia Econômica I
- Economia Aplicada a Sistemas Complexos

Justificativa
A área de dinâmica de opiniões lida com ferramentas da Mecânica Estatística para modelar a emergência dos comportamentos sociais e verificar sua robustez frente a diferentes especificações do modelo. Entende-se por opiniões quaisquer tipos de pensamento, inclusive os que servem de base para tomadas de decisão; o que permite modelagem de decisões de consumidores para aplicações em Marketing e modelagem do comportamento de sociedades e a evolução de idéias no tempo.
<table>
<thead>
<tr>
<th>Tema</th>
<th>Dinâmica da organização social e familiar de grupos autárquicos sob influência crescente da economia de mercado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Métodos Matemáticos e de Computação I</td>
</tr>
<tr>
<td></td>
<td>Sistemas Complexos I</td>
</tr>
<tr>
<td></td>
<td>Simulação de Sistemas Complexos I</td>
</tr>
<tr>
<td></td>
<td>Simulação de Sistemas Complexos II</td>
</tr>
<tr>
<td></td>
<td>Economia Aplicada a Sistemas Complexos</td>
</tr>
<tr>
<td></td>
<td>Ecologia Humana e Antropologia Econômica I</td>
</tr>
<tr>
<td></td>
<td>Ecologia Humana e Antropologia Econômica II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Composição de disciplinas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Justificativa</th>
</tr>
</thead>
<tbody>
<tr>
<td>A integração de grupos autárquicos tradicionais como sociedades indígenas e extrativistas ocorre hoje tanto por aumento no contato direto, quanto por incentivos externos de programas de desenvolvimento local ou pela implementação de estratégias de conservação baseadas em projetos de comercialização de produtos naturais. As evidências científicas mostram transformações na organização social e familiar, as quais são explicadas a partir de modelos que levam em conta aspectos como o retorno econômico, o risco ou o nível de prazer do trabalho desenvolvido, dentre outros. Embora transformações na organização familiar (por exemplo, a quebra de famílias extensas para famílias nucleares) ou social (por exemplo, a redução de práticas de compartilhamento) sejam fartamente documentadas, testes empíricos dos modelos são difíceis de levar a cabo, devido ao grande número de variáveis envolvidas, ao fator temporal inerente às transformações e a questões práticas de levantamento de dados empíricos em áreas remotas e o custo associado. Dessa forma, estratégias de simulação podem contribuir a testar e propor modelos teóricos que permitam explicar os fatores na base das transformações, importantes para informar estratégias de desenvolvimento local e de conservação.</td>
</tr>
</tbody>
</table>
Anexo II - Regulamento do Programa de Pós-Graduação em Modelagem de Sistemas Complexos

NORMAS DO PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM DE SISTEMAS COMPLEXOS

I - COMPOSIÇÃO DA COMISSÃO COORDENADORA DO PROGRAMA (CCP)

A Comissão Coordenadora de Programa (CCP) será constituída pelo Coordenador do Programa de Pós-Graduação e seu Suplente, por mais 3 (três) docentes credenciados como orientadores no Programa e por 1 (um) representante discente regularmente matriculado no Programa. Cada membro titular terá um suplente.

I - CRITÉRIOS DE SELEÇÃO

O processo de seleção consta de prova escrita e apresentação de resultado em prova de proficiência em língua inglesa.

Da prova escrita

1. A prova escrita é de caráter eliminatório, sendo a nota mínima para aprovação 7,0;

2. A prova escrita é composta por questões dissertativas sobre métodos estatísticos e matemáticos básicos e metodologia de pesquisa.

Da proficiência em língua inglesa e portuguesa

1. O ingresso no programa requer apresentação de resultado de prova de proficiência em língua inglesa emitida por uma das seguintes instituições:

II - PRAZOS
O programa de mestrado deve ser concluído em até 30 (trinta) meses, considerando neste prazo o depósito da dissertação.

IV - CRÉDITOS MÍNIMOS

O número mínimo de créditos a ser obtido pelo aluno de mestrado é 100 (cem) créditos, distribuídos da seguinte maneira:

a. 50 (cinquenta) créditos em disciplinas;
b. 50 (cinquenta) créditos pela dissertação.

Não serão concedidos créditos pelas atividades relacionadas no artigo 65 do Regimento de Pós-Graduação

V – LÍNGUA ESTRANGEIRA

O ingresso no programa requer apresentação de resultado de prova de proficiência em língua inglesa emitida por uma das seguintes instituições, conforme apresentado nos critérios de seleção:

a. União Cultural Brasil Estados Unidos;
b. Test of English as Foreign Language (TOEFL);
c. International English Language Test (IELTS);
d. Graduate Management Admission Test (GMAT - EUA);
e. Graduate Record Examinations.

A nota mínima requerida nas provas de proficiência de cada uma das instituições é:

a. União Cultural Brasil Estados Unidos: 6,0 (seis), equivalente a aproveitamento de 60%;
b. Test of English as Foreign Language (TOEFL): 190 pontos para Computer-based-Test (CBT), 500 pontos para Paper-based-Test (PBT) ou 68 pontos para Internet-based-Test (IBT);
c. International English Language Test (IELTS): 5,5 pontos;
d. Graduate Management Admission Test (GMAT - EUA): Aprovado;
e. Graduate Record Examinations (EUA): Aprovado.

A validade das provas de proficiência para efeito de matrícula no programa é de 3 (três) anos após a data de realização da prova;

No caso de candidatos estrangeiros oriundos de países que não sejam de língua portuguesa, deve também ser apresentado “Certificado de Proficiência em Língua Portuguesa para Estrangeiros
VI – DISCIPLINAS

O credenciamento de novas disciplinas será analisado pela Comissão Coordenadora do Programa;

As propostas de criação de disciplinas deverão ser apresentadas em formulário próprio, onde devem ser especificadas as seguintes informações:

1. Título da disciplina, duração em semanas e sugestão do período letivo; carga horária semanal; unidades de crédito (especificando o número de aulas teóricas, práticas, seminários e outras atividades); nome(s) do(s) professor(es) responsável(is); forma de avaliação; indicação de pré-requisitos quando houver, bibliografia pertinente e atualizada.

2. Programa detalhado da disciplina, especificando os objetivos, apresentando justificativas que denotem a importância e a coerência com a proposta do programa, assim como a ligação à linha de pesquisa do proponente. Os objetivos deverão estar claros e bem definidos.

3. Parecer emitido por professor do programa indicado pela Comissão Coordenadora do Programa, o qual deve avaliar o conteúdo da disciplina, o mérito e a relevância da disciplina dentro do programa de pós-graduação, a atualidade e a relevância da bibliografia, bem como a capacitação do(s) professor(es) responsável(is) para ministrar(em) a disciplina.

A solicitação de credenciamento de novas disciplinas deve ser encaminhada à Comissão Coordenadora de Programa em tempo hábil para possibilidade de inclusão no semestre seguinte, observando-se os trâmites e as datas previstas de reunião da Coordenação do programa, a partir do preenchimento da ficha de cadastro de disciplinas do programa.

VII – CANCELAMENTO DE TURMAS DE DISCIPLINAS

O cancelamento de turmas de disciplinas pode ocorrer nos seguintes casos:

1. Turma com número inferior a 3 (três) alunos;
2. Mediante solicitação do ministrante por motivo de força maior, aprovada pela CCP.

O prazo máximo para cancelamento de disciplina é de 30 (trinta) dias após o início das aulas.

VIII – EXAME DE QUALIFICAÇÃO

O exame de qualificação é obrigatório para os alunos de mestrado do programa;

Para submeter-se ao exame de qualificação, o aluno deve ter cumprido pelo menos 60% dos créditos mínimos exigidos em disciplinas.

Os objetivos específicos do exame de qualificação são:

a. Avaliar o conhecimento do candidato no seu tema de dissertação/tese e na literatura básica concernente;

b. Avaliar a estrutura proposta para a dissertação/tese;

c. Avaliar a maturidade e o conhecimento do aluno mediante a estrutura proposta para a dissertação;

d. Avaliar a pesquisa desenvolvida pelo candidato e indicar as alterações necessárias.

Em conseqüência, a forma do exame de qualificação consiste na avaliação de documento escrito depositado na secretaria do programa, contendo:

a) Projeto de pesquisa;

b) Revisão bibliográfica;

c) Plano esquemático da dissertação e
d) Pesquisa realizada.

O prazo máximo para inscrição no exame será de 18 (dezoito) meses a partir da primeira matrícula no curso.

O prazo máximo para realização do exame será de 90 (noventa) dias a partir da inscrição.
Em caso de reprovação, o candidato terá direito a fazer o segundo exame de qualificação, depositando o novo documento na secretaria do programa até o prazo máximo de até 90 (noventa) dias, contados a partir da data da reprovação.

Competirá ao orientador solicitar à CCP, em formulário próprio, o exame de qualificação ao mestrado de seu orientando, no mínimo 2 (dois) meses antes do prazo específico, por meio de requerimento acompanhado de uma relação de 6 (seis) nomes de professores sugeridos para a comissão examinadora, sendo 3 (três) titulares e 3 (três) suplentes. A comissão deverá ser formada por 3 (três membros), sendo no mínimo um membro externo ao programa.

IX – PASSAGEM DE MESTRADO PARA DOUTORADO DIRETO

Não se aplica.

X – DESEMPENHO ACADÊMICO E CIENTÍFICO INSATISFATÓRIO

O aluno matriculado no Mestrado poderá ser desligado do curso de acordo com o definido no artigo 54 do Regulamento de Pós-Graduação da Universidade de São Paulo.

XI – ORIENTADORES E CO-ORIENTADORES

O credenciamento será analisado levando em conta critérios obrigatórios e critérios recomendáveis, mas não obrigatórios, detalhados a seguir.

Em processos de credenciamento e recredenciamento um parecerista será indicado pela CCP para avaliar a aderência do postulante ao Programa, bem como seus indicadores quantitativos e qualitativos de produção.

O credenciamento e recredenciamento como orientador pleno terá validade de 3 (três) anos.
O limite máximo de orientados por orientador é dez, conforme o limite máximo estabelecido pelo regimento.

XI.1. CRITÉRIO OBRIGATÓRIO PARA CREDENCIAMENTO E RECREDENCIAMENTO

O critério obrigatório é ter produção científica qualificada, somando 10 (dez) pontos nos últimos 3 (três) anos, de acordo com a seguinte tabela:

<table>
<thead>
<tr>
<th>Tipo de Publicação</th>
<th>Pontuação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artigo com fator de impacto ≥ 0,5</td>
<td>Até 6 pontos</td>
</tr>
<tr>
<td>Artigo com fator de impacto ≥ 0,25 e <0,5</td>
<td>Até 5 pontos</td>
</tr>
<tr>
<td>Artigo com fator de impacto < 0,25</td>
<td>Até 3 pontos</td>
</tr>
<tr>
<td>Artigo em periódicos inscritos no Scielo</td>
<td>Até 4 pontos</td>
</tr>
<tr>
<td>Artigo em periódico com ISSN, mas sem os requisitos anteriores</td>
<td>Até 3 pontos</td>
</tr>
<tr>
<td>Capítulo de livro nacional/internacional</td>
<td>Até 4 pontos</td>
</tr>
<tr>
<td>Livro nacional</td>
<td>Até 5 pontos</td>
</tr>
<tr>
<td>Livro internacional</td>
<td>Até 6 pontos</td>
</tr>
<tr>
<td>Anais de congressos Qualis A ou B (área de origem)</td>
<td>Até 2 pontos cumulativos, considerando um máximo de até 8 pontos no total</td>
</tr>
</tbody>
</table>

(1) Por fator de impacto, considera-se o fator ISI/JCR (Journal Citation Records) no último período de avaliação disponível. Caso o critério de fator de impacto seja extinto, até aprovação de nova tabela será considerada a última avaliação disponível no sistema.

XI.2. OUTROS CRITÉRIOS OBRIGATÓRIOS PARA RECREDENCIAMENTO

Para recredenciamento é necessário a oferta de, no mínimo, 1 (uma) disciplina no Programa nos últimos 3 (três) anos;

Se a produção acadêmica do solicitante for insuficiente, conforme critérios obrigatórios expostos, o docente poderá obter credenciamento específico.

XI.3. CRITÉRIOS NÃO OBRIGATÓRIOS DESEJÁVEIS PARA CREDENCIAMENTO E RECREDENCIAMENTO
Na avaliação do credenciamento e recredenciamento, serão também considerados pelo parecerista indicado pela CCP os seguintes aspectos:

1. Aderência do postulante ao Programa e às linhas de pesquisa;
2. Coordenação ou participação comprovada por documento em projetos financiados por agências de fomento à pesquisa nacionais ou internacionais;
3. Experiência de orientação em nível de pós-graduação e graduação;
4. Obtenção de bolsas.

No caso de recredenciamento, além dos critérios anteriores serão avaliados:

1. O número de alunos orientados e titulados no período;
2. O número de egressos no período sem titulação (evasão);
3. O tempo médio de titulação de alunos orientados;
4. A existência de produção científica qualificada derivada das dissertações orientadas.

XI.4. CREDENCIAMENTO ESPECÍFICO DE ORIENTADORES EXTERNOS

Excepcionalmente, poderão ser credenciados especificamente docentes/pesquisadores, docentes de outras instituições, pós-doutorandos, jovens pesquisadores e professores visitantes para orientação específica para um pós-graduando. Nesse caso, o pesquisador deve preencher todos os requisitos para o credenciamento pleno, além de apresentar solicitação a ser submetida à CCP e avaliada por um parecerista, contendo:

1. Justificativa circunstanciada da contribuição inovadora do credenciamento para o programa;
2. Identificação do vínculo profissional do candidato, mencionando sua vigência;
3. Descrição da linha de pesquisa e produção científica;
4. Demonstração da existência de recursos financeiros para o financiamento do projeto proposto para orientação.
XII – PROCEDIMENTOS PARA DEPÓSITO DA DISSERTAÇÃO

Mediante apresentação dos requerimentos necessários, os 5 (cinco) exemplares da dissertação devem ser depositados pelo aluno na Secretaria de Pós-Graduação da EACH, obedecendo-se aos prazos regimentais e aos requisitos estabelecidos nas normas do programa.

São documentos necessários ao depósito da dissartação:

1. Aprovação por escrito do orientador;
2. 5 (cinco) cópias da dissertação de Mestrado.

XIII – NOMENCLATURA DO TÍTULO

O diploma será expedido como Mestre em Ciências.

XIV – OUTRAS NORMAS

Os alunos do programa deverão apresentar um relatório de atividades anual até o início do período de matrícula do semestre seguinte, contendo uma descrição sucinta de suas atividades acadêmicas.
Anexo III - Currículos Lattes dos Docentes Orientadores do Programa de Pós-Graduação em Modelagem de Sistemas Complexos