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Algorithms - basic methods

e Inferring rudimentary rules
e Constructing decision trees

e Statistical modeling



0-R - “Zero-Rule”

e The simplest classification method which relies on the target (class
attribute) and ignores all predictors (attributes).

e Despite its lack of power, it is useful for determining a baseline
performance as a benchmark for oher classification methods.

e Algorithm:

e Construct a frequency table for the target and select its most
frequent value.



0-R - “Zero-Rule”

e Example: The weather problem:

Plav = Yes

Predictors Target
N

Play Golf

No




1-R - “One-Rule”

Learns a 1-level decision tree

Generates one rule for each predictor in the data, then selects the rule
with the smallest total error as its "one rule".

In some cases, OneR produces rules only slightly less accurate than
state-of-the-art classification algorithms while producing rules that are
simple for humans to interpret.

Algorithm

For each attribute,
For each value of the attribute, make a rule as follows:
count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value
Calculate the error rate of the rules
Choose the rules with the smallest error rate

“Missing” is treated as a separate attribute value



1-R - “One-Rule”

e Example: The weather problem:

Which one is the best predictor ?

Outlook  Temp Humidity Windy  Play Golf

Rainy Hot High False No
Rainy Hot High True No
Orvercast Hot High False Yes
Sunny Mild High False Yes
Sunny Cool Normal False Yes
Sunny Cool Normal True Mo
Crwercast Cool Normal True Yes
Rainy Mild High False Mo
Rainy Cool Normal False Yes
Sunny Mild Normal False Yes
Rainy Mild Normal True Yes
Orvercast Mild High True Yes
Orvercast Hot Normal False Yes
Sunny Mild High True Mo




1-R - “One-Rule”

e Example: The weather problem:

Attribute Rules Errors Total
errors

Qutlook Sunny — No 2/5 4/14
Overcast —» Yes 0/4
Rainy — Yes 2/5

Temp Hot — No* 2/4 5/14
Mild — Yes 2/6
Cool — Yes 1/4

Humidity High — No 3/7 4/14
Normal — Yes 1/7

Windy False — Yes 2/8 5/14

True — No™ 3/6




1-R - “One-Rule”

e Example: The weather problem:

e The best predictor:

* Play Golf
Yes Ne
Sunimy 3 2
Outlook | Overcast L. ]
Raimy 2 3

IF Outlook = Sunny THEN PlayGolf = Yes
IF Outlook = Overcast THEN PlayGolf = Yes
IF Outlook = Rainy THEN PlayGolf = No



1-R — Numeric Attributes

Discretize numeric attributes

Divide each attribute’s range into intervals

e Sort instances according to attribute’s values
o Place breakpoints where class changes (majority class)
e This minimizes the total error

Example: femperature from weather data

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

Missing values in numeric attributes:

¢ An additional category is created for them
o Discretization procedure is applied just for instances for which the
attribute’s value is defined



1-R — The Problem of Overfitting

e Procedure above tends to overfit (i.e. to produce rules with very low
error rate for the training set but useless for classifying new instances)

¢ Instances with incorrect class labels may produce separate
intervals
¢ Time stamp attribute will have zero errors (on the treining set)

e Simple solution: enforce minimum number of instances in majority
class per interval (exhaustive search for the best combination)

e Example (with min=3):

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes iNo r Yes Yes Yes | No No Yes J} Yes Yes | No ) Yes Yes J) No

Merging adjacent intervals labelled with the same class:

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes 4 No No Yes Yes Yes | No Yes Yes No




1-R — With Overfitting Avoidance

e Resulting rule set:

Attribute Rules Errors Total errors
Qutlook Sunny — No 2/5 4/14
Overcast — Yes 0/4
Rainy — Yes 2/5
Temperature =77.5 — Yes 3/10 5/14
> 77.5 - No* 2/4
Humidity =82.5 > Yes 1/7 3/14
> 82.5and £95.5 - No 2/6
> 955 > Yes 0/1
Windy False — Yes 2/8 5/14
True — No* 3/6




Classification Trees

e A Classification Tree is a recursive structure where:

Inner (non-terminal) node are decision nodes, labeled with
attributes (or binary conditions) ;

Leaves (terminal nodes) are response node, labeled with classes
(or estimated probabilities for all classes);

Edges linking inner nodes their children are labeled with values,
intervals or subsets of the respective attributes.

Paths from the root to leaves correspond to decision rules.

e Variant: Regression Trees, for continuous target variables



A Classification Tree for the Labor Data

wage increase 1st year
statutory holidays

<=10

wage increase 1st year

good




Induction of Classification Trees

e TDIDT: top-down induction of decision trees

e Basic principles:
e Starting in the root node, recursively partitioning the training set
using one-rule scheme variants
o Each subset of training examples generated by the split rule
corresponds to a new child node in the tree
e When all examples in a subset have the same class label or when
the subset achieves a stop rule:

e the corresponding node is declared as a terminal node.
e aclass label (or a vector with class probabilities) is assigned

e Variant: Regression Trees, for continuous target variables



Induction of Classification Trees

e TDIDT: top-down induction of decision trees
e Recursive divide-and-conquer fashion:

@ First: Select the best attribute for root node
Create a branch for each possible attribute value (or according to
the split scheme of the algorithm)

® Then: split instances into subsets
One for each branch extending from the node

® Finally: repeat recursively for each branch, using only instances
that reach the branch

e When all examples have the same class label or when the subset
achieves a stop rule:

o the corresponding node is declared as a terminal node.
¢ aclass label (or a vector with class probabilities) is assigned



General Algorithm for Induction of
Classification Trees

e Main components:

o Stop rule for tree expansion of a note t: Stp(t)
o Class labeling criterion: Label(t) '
e Score function for evaluation of a split §/ of attribute a; for the

subset L: score(L, j, ')



General Algorithm for Induction of
Classification Trees

Build-Tree(t, £, Stp, Label, score)
If training set £ satisfies the stop rule Stp(t),

¢ then label t according to rule Label(t)
e otherwise

a) Foreach attribute @;, j=1... M:

« for each possible valid split 8/, s}, . .. s}, of attribute &, evaluate
score(L, J, sy)
e choose the partition s* with maximum score

b) Choose the attribute a which yields the maximum score

c) Label t with attribute af

d) Split the training set £ into the subsets L, ..., £, induced by s*

e) Create new children nodes ti, ..., t, corresponding to subsets L1, ..., L,
and apply the algorithm recursively



Algorithm for Classification Trees — Notation

e n,:: number of instances of £ incident on node ¢
e nkt: number of instances of class k incident on ¢

e 7 t: (Unknown) probability of an instance x € X incident on node ¢
belonging to class k.

o Estimator for 7 ;: proportion of class k in node t:

Tkt =



Terminal Node Labeling — Minimum Error

e Basic Idea: Label the node with the majority class.
e Formalization:

e erry(k): denotes the estimated probability of an instance incident
on f belonging to a class different from k, given that ¢ is labeled
with class k

err(k) = i =1—fu
I+£k
e Hence, the minimum classification error, denoted r(t), is given by

r(t)= min erry(k) =1— max #
(1) k=1...K (k) Pl L

o Therefore, the majority labeling criterion minimizes the
classification error:

k* =arg min erri(k) = arg max & ;.
gk:1..4K t( ) gk:1...K kit



Terminal Node Labeling — Minimum Cost

Not all misclassification types have the same consequences
Which is worse?

o To diagnose a healthy patient as ill, or to diagnose an ill patient as
healthy?

¢ To deny credit to a good customer, or to give loan to a bad
customer?

C(l, k): cost of assigning class k to an instance which true class is /

0 ifk=1
C(/vk)_{ >0 ifk#L

Example: severity of a disease

Classe Predita

Leve Média Grave
Qo __ Leve 0 1 2
2 o
8 4 Média 5 0 1
-
Q Grave 10 6 0




Terminal Node Labeling — Minimum Cost

If t is labeled with class k, the expected misclassification cost is given
by
Cerry(k) = >_ #1,C(I, k)
Ik

Under this criterion, r(t) denotes the minimum expected
misclassification cost for an instance incident on node t:

r(t) = min Cerry(k).

The class k* chosen for labeling t is therefore

kK* =arg kgan aa?rt(k)

Note: The minimum error criterion is a particular case of minimum

cost, with
0 k=1
C(”k):{ 1 ikl



Attribute Selection

¢ In the above generic algorithm, score function evaluates attribute splits
e Two classical split criteria based on impurity:

o Entropy
e Gini Index

e Impurity function requirements:

@ Impurity is null if all instances are of same class

® Impurity is maximum if all instances have the same frequency
(uniform distribution)

® Impurity is symmetrical on the classes



Attribute Selection — Gini index

e Simplified version of Gini coefficient, developed by Corrado Gini in
1912

¢ One of the most commonly used measure to represent the
income distribution of a nation’s residents (measure of inequality)

e Gini index formulation:

K
G(t) = > Fkiie = Y Fue D AL

Ik k=1 Ik
K K K
~ N ~ A2
= > Ake-(1—Fke) = D e — D Fry
k=1 k=1 k=1
K



Attribute Selection — Gini index

e Purity gain:

o impurity before splitting - impurity after splitting
e given a candidate split s of a node t yielding the children nodes
ti, b, ..., tz the purity gain is given by:

N, N
AG(t) = G(1) = G (t) = .. = (L)
t
where N; is the number of instances in node t and Ny, Ny, ..., Ny,
are the number of instances distributed among t, b, ..., Tz.

e Attribute selection: maximum purity gain



Attribute Selection — Shannon’s Entropy

Entropy:

o Measure of disorder or uncertainty
o Raised in thermodynamics and statistical mechanics

Shannon’s entropy:

¢ Introduced by Claude E. Shannon in 1948
e Provides an absolute limit on the best possible average length of
lossless encoding or compression of any communication

Entropy computation for a node t:
K

5(t) = — Zﬁk’t : |Ogg[ﬁ'k,t]
k=1

Information gain:



Impurity
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Attribute Selection — Gini vs Entropy

— Gini
---- Information
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Attribute Selection — Gain Ratio

e Impurity functions issue: bias towards multi-valued attributes

e Subsets are more likely to be pure if there is a large number of
values
=- For non-binary trees, impurity functions (like Entropy and Gini index)
are biased towards choosing attributes with a large number of
values
= This may result in overfitting (selection of an attribute that is
non-optimal for prediction)

e Gain ratio: a modification of the information gain that reduces its bias

e It corrects the information gain by taking the intrinsic information
of a split into account



Attribute Selection — Gain Ratio

Intrinsic information: entropy of distribution of instances into branches
(a measure of the “spreading” of instances along branches):

V4
SP(t)=->_ —NI(VI;Z) x log, (NI(\ZZ)>
z=1

The gain ratio is given by:

GR(t) = 2;28

Value of attribute decreases as intrinsic information gets larger

Problem with gain ratio: it may overcompensate

e May choose an attribute just because its intrinsic information is
very low

e Standard fix: only consider attributes with greater than average
information gain



Attribute Selection — Weather Data

rainy high \ normal false \ true

overcast

temperature




Attribute Selection — Weather Data

Qutlook Temperature

Info: 0.693 Info: 0.911
Gain: 0.940-0.693 0.247 Gain: 0.940-0.911 0.029
Split info: info([5,4,51) 1.577 Split info: info([4,6,4]) 1.557
Gain ratio: 0.247/1.577 0.157 Gain ratio: 0.029/1.557 0.019
Humidity Windy

Info: 0.788 Info: 0.892
Gain: 0.940-0.788 0.152 Gain: 0.940-0.892 0.048
Split info: info([7,71) 1.000 Split info: info([8,6]) 0.985
Gain ratio: 0.152/1 0.152 Gain ratio: 0.048/0.985 0.049




Split Strategies — Numeric Attributes

e Standard method: binary splits in the form

X<Co

e How to choose split point ¢y?
Straightforward:

e Evaluate score function for every possible split point of attribute
e Choose “best” split point
e Score for best split point is the optimum score for the attribute

e Computationally more demanding



Split Strategies — Numeric Attributes

e Example: Weather data — split on temperature attribute:
64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

o E.g. temperature < 71.5: yes/4, no/2
temperature > 71.5: yes/5, no/3
e Info([4,2],[5,3]) = 6/14 info([4,2]) + 8/14 info([5,3])
=0.939

e Place split points halfway between values

e Can evaluate all split points in one pass!



Split Strategies — Numeric Attributes

e Binary Split used by: C4.5, CART, LMT, etc

e Some algorithms generate splits with more than two intervals
CAL5, FACT, REAL (Stern et al, 1998), etc
Bottom-up approach:

o Start with small “pure” intervals
e Merge adjacent intervals if certain conditions hold



Split Strategies — Categorical Attributes

e Ordered categorical attributes may be treated similarly to numeric ones
e For nominal attributes, two approaches:
e Start a new branch for each value
e Use gain ratio or other method to avoid bias

e Binary split of values:

e For every possible subset S of the attribute, evaluate the score
function for the rule in the form

XeA

e Choose the optimum subset
e Score for best subset is the optimum score for the attribute



Algorithms for Classification Trees — Other
refinements

Stop rules

e Minimum number of examples
e Minimum score gain

Tree Pruning to avoid overfitting
Treatment of missing data

Attribute importance



Naive Bayes

e Concept description under a probabilistic point of view:
e What is the probability of class y given the attribute vector x?
e Classes: y € {1..K}

e Bayes’ Rule:
Pr(y, x) = Pr(x) Pr(y|x)
Pr(y, x) = Pr(y) Pr(x|y)
Equaling two Expressions:
Pr(y) Pr(xly) Pr(y) Pr(x|y)

PV = 00 T S ik Prixi)

Obs: On above equation, notice that:

K K

Prix)=)_  Pr(kx)=Y_  Pr(k)Pr(x|k)



Naive Bayes

e Bayes Rule:
Pr(y) Pr(xly)
Ykt Pr(k) Pr(xk)

Pr(y|x) =

e Interpretation:

e Pr(y): priori probability (initial probability guess) for y
o Pr(x|y): likelihood of class y after observation x
o Pr(x|y) =Pr(xy, X2, ..., Xumly)
where x; is the observed value of attribute a;
e Naive assumption: Attributes are
e equally important
o statistically independent (given the class value)
e |.e., knowing the value of one attribute says nothing about the value
of another (if the class is known)

These assumptions are expressed in the following equation:

Pr(x, Xz, .., xuly) = Pr(xaly) PrQxely) ... Pr(xmly)



Naive Bayes

e Bayes Rule: Pr(y) Pr(xly)
. r y r(x y
PO = S i) Pr(a)

e Computing Pr(y):
¢ Relative frequency of class y in training set £
e Computing Pr(x;|y) for categorical attributes:

@ Count the absolute frequencies of each attribute value on class y
® Normalize the frequencies by the number of instances of class y



Naive Bayes — Weather Data

Outlook Temperature Humidity Windy Play

Yes Mo Yes Mo Yes Mo Yes No | Yes Mo
Sunny 2 3 | Hot 2 High 3 4 | False 6 2 9 5
Overcast 4 0 | Mild 4 2 Normal 6 1 | True 3 3
Rainy 3 2 | Cool 1
Sunny 2/9  3/5 |Hot 2/9  2/5 |High 3/9 4/5 | False 69 2/5| 9 5
Overcast  4/9 0/5 |Mild 49  2/5 |Normal 6/9  1/5 |True 39 35| 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5




Naive Bayes — Weather Data

e A new day:

Outlook  Temp. Humidity Windy Play
Sunny Cool High True ?

Likelihood of the two classes
For “yes” = 2/9 x 3/9 x 3/9 x 3/9 x 9/14 = 0.0053
For “no” = 3/5 x 1/5 x 4/5 x 3/5 x 5/14 = 0.0206
Conversion into a probability by normalization:
P("yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205
P("no”) = 0.0206 / (0.0053 + 0.0206) = 0.795




Naive Bayes — Extensions

e What if an attribute value doesn’t occur with every class value?
(e.g. “Humidity = high” for class “yes”)
o Probability will be zero!

e A posteriori probability will also be zero!
(No matter how likely the other values are!)

e Remedy: add 1 to the count for every attribute value-class combination
(Laplace estimator)

e Result: probabilities will never be zero!
(also: stabilizes probability estimates)



Naive Bayes — Missing Values

e Missing data treatment is straightforward:

e Training: instance is not included in frequency count for attribute
value-class combination
o Classification: attribute will be omitted from calculation

e Example:

Qutlook  Temp. Humidity Windy Play
? Cool High True ?

Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238
Likelihood of “no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343
P("yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P("no”) = 0.0343 / (0.0238 + 0.0343) = 59%




Naive Bayes — Numeric Attributes

e Usual assumption: numeric attributes have a normal probability
distribution (given the class)

Parameters for each class k: mean uk, standard deviation ok
Probability density function (pdf):

(X — pk)?

1
f(X|uk70'k) = m exp (_M>
k

e Estimation of ux and o, are obtained from instances of class k

1
Hie = ﬁk ZX/ \,Vi:kXi

|
_ . 2
A S

Nk: number of instances of class k




Naive Bayes — Weather Data

Outlook Temperature Humidity Windy Play

Yes Mo Yes Ne Yes No Yes Mo | Yes Mo
Sunny 2 3 64,68, 6571, 65,70, 70, 85, |False 6 2 9 5
Overcast 4 0 69,70, 72,80, 70,75, 90,91, |True 3 3
Rainy 3 2 72, .. 85 .. 80, ... 95, ..
Sunny 2/9 35 1=73 =75 =79 11=86 | False 6/9 2/5| 9 5
Overcast  4/9 0/5 =62 =79 =102 =97 |True 3/9 35| 14 14
Rainy 3/9 2/5
e Example density value:

2
f(temperature=66|yes) = 1 exp (—M) = 0.0340
V276.2 26.22




Naive Bayes — Weather Data

e A new day:

Qutlook  Temp. Humidity Windy Play
Sunny 66 90 true ?

Likelihood of “yes” = 2/9 x 0.0340 x 0.0221 x 3/9 x 9/14 = 0.000036
Likelihood of *no” = 3/5 x 0.0221 x 0.0381 x 3/5 x 5/14 = 0.000108
P("yes") = 0.000036 / (0.000036 + 0. 000108) = 25%
P("n0”) = 0.000108 / (0.000036 + 0. 000108) = 75%

e Missing values during training are not included in calculation of mean
and standard deviation



