
Introduction to Supervised Learning

Basic Methods

Marcelo S. Lauretto

Escola de Artes, Ciências e Humanidades,
Universidade de São Paulo

marcelolauretto@usp.br

Lima - Peru

Algorithms - basic methods

• Inferring rudimentary rules

• Constructing decision trees

• Statistical modeling

0-R – “Zero-Rule”

• The simplest classification method which relies on the target (class
attribute) and ignores all predictors (attributes).

• Despite its lack of power, it is useful for determining a baseline
performance as a benchmark for oher classification methods.

• Algorithm:

• Construct a frequency table for the target and select its most
frequent value.

0-R – “Zero-Rule”

• Example: The weather problem:

Play = Yes

1-R – “One-Rule”

• Learns a 1-level decision tree

• Generates one rule for each predictor in the data, then selects the rule
with the smallest total error as its "one rule".

• In some cases, OneR produces rules only slightly less accurate than
state-of-the-art classification algorithms while producing rules that are
simple for humans to interpret.

• Algorithm

For each attribute,
For each value of the attribute, make a rule as follows:

count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value

Calculate the error rate of the rules
Choose the rules with the smallest error rate

• “Missing” is treated as a separate attribute value

1-R – “One-Rule”

• Example: The weather problem:

1-R – “One-Rule”

• Example: The weather problem:

1-R – “One-Rule”

• Example: The weather problem:

• The best predictor:

1-R – Numeric Attributes

• Discretize numeric attributes

• Divide each attribute’s range into intervals

• Sort instances according to attribute’s values
• Place breakpoints where class changes (majority class)
• This minimizes the total error

• Example: temperature from weather data

• Missing values in numeric attributes:

• An additional category is created for them
• Discretization procedure is applied just for instances for which the

attribute’s value is defined

1-R – The Problem of Overfitting

• Procedure above tends to overfit (i.e. to produce rules with very low
error rate for the training set but useless for classifying new instances)

• Instances with incorrect class labels may produce separate
intervals

• Time stamp attribute will have zero errors (on the treining set)

• Simple solution: enforce minimum number of instances in majority
class per interval (exhaustive search for the best combination)

• Example (with min=3):

Merging adjacent intervals labelled with the same class:

1-R – With Overfitting Avoidance

• Resulting rule set:

Classification Trees

• A Classification Tree is a recursive structure where:

• Inner (non-terminal) node are decision nodes, labeled with
attributes (or binary conditions) ;

• Leaves (terminal nodes) are response node, labeled with classes
(or estimated probabilities for all classes);

• Edges linking inner nodes their children are labeled with values,
intervals or subsets of the respective attributes.

• Paths from the root to leaves correspond to decision rules.

• Variant: Regression Trees, for continuous target variables

A Classification Tree for the Labor Data

Induction of Classification Trees

• TDIDT: top-down induction of decision trees

• Basic principles:

• Starting in the root node, recursively partitioning the training set
using one-rule scheme variants

• Each subset of training examples generated by the split rule
corresponds to a new child node in the tree

• When all examples in a subset have the same class label or when
the subset achieves a stop rule:

• the corresponding node is declared as a terminal node.
• a class label (or a vector with class probabilities) is assigned

• Variant: Regression Trees, for continuous target variables

Induction of Classification Trees

• TDIDT: top-down induction of decision trees

• Recursive divide-and-conquer fashion:

1 First: Select the best attribute for root node
Create a branch for each possible attribute value (or according to
the split scheme of the algorithm)

2 Then: split instances into subsets
One for each branch extending from the node

3 Finally: repeat recursively for each branch, using only instances
that reach the branch

• When all examples have the same class label or when the subset
achieves a stop rule:

• the corresponding node is declared as a terminal node.
• a class label (or a vector with class probabilities) is assigned

General Algorithm for Induction of
Classification Trees

• Main components:

• Stop rule for tree expansion of a note t : Stp(t)
• Class labeling criterion: Label(t)
• Score function for evaluation of a split sj of attribute aj for the

subset L: score(L, j , sj)

General Algorithm for Induction of
Classification Trees

Build-Tree(t , L, Stp, Label, score)

If training set L satisfies the stop rule Stp(t),

• then label t according to rule Label(t)

• otherwise

a) For each attribute aj , j = 1 . . .M:

• for each possible valid split sj
1, s

j
2, . . . s

j
q of attribute aj , evaluate

score(L, j, sj
q)

• choose the partition s∗ with maximum score

b) Choose the attribute a∗
j which yields the maximum score

c) Label t with attribute a∗
j

d) Split the training set L into the subsets L1, . . . ,Lz induced by s∗

e) Create new children nodes t1, . . . , tz corresponding to subsets L1, . . . ,Lz

and apply the algorithm recursively

Algorithm for Classification Trees – Notation

• n•,t : number of instances of L incident on node t

• nk,t : number of instances of class k incident on t

• πk,t : (unknown) probability of an instance x ∈ X incident on node t
belonging to class k .

• Estimator for πk,t : proportion of class k in node t :

π̂k,t =
nk,t

n•,t

Terminal Node Labeling – Minimum Error

• Basic Idea: Label the node with the majority class.

• Formalization:

• êrr t (k): denotes the estimated probability of an instance incident
on t belonging to a class different from k , given that t is labeled
with class k

êrr t (k) =
∑
l 6=k

π̂l,t = 1− π̂k,t

• Hence, the minimum classification error, denoted r(t), is given by

r(t) = min
k=1...K

êrr t (k) = 1− max
k=1...K

π̂k,t ,

• Therefore, the majority labeling criterion minimizes the
classification error:

k∗ = arg min
k=1...K

êrr t (k) = arg max
k=1...K

π̂k,t .

Terminal Node Labeling – Minimum Cost

• Not all misclassification types have the same consequences

• Which is worse?

• To diagnose a healthy patient as ill, or to diagnose an ill patient as
healthy?

• To deny credit to a good customer, or to give loan to a bad
customer?

• C(l , k): cost of assigning class k to an instance which true class is l

C(l , k) =

{
0 if k = l
≥ 0 if k 6= l .

• Example: severity of a disease

Terminal Node Labeling – Minimum Cost

• If t is labeled with class k , the expected misclassification cost is given
by

Ĉerr t (k) =
∑
l 6=k

π̂l,tC(l , k)

• Under this criterion, r(t) denotes the minimum expected
misclassification cost for an instance incident on node t :

r(t) = min
k

Ĉerr t (k).

• The class k∗ chosen for labeling t is therefore

k∗ = arg min
k=1...K

Ĉerr t (k)

• Note: The minimum error criterion is a particular case of minimum
cost, with

C(l , k) =

{
0 if k = l
1 if k 6= l .

Attribute Selection

• In the above generic algorithm, score function evaluates attribute splits

• Two classical split criteria based on impurity:

• Entropy
• Gini Index

• Impurity function requirements:

1 Impurity is null if all instances are of same class
2 Impurity is maximum if all instances have the same frequency

(uniform distribution)
3 Impurity is symmetrical on the classes

Attribute Selection – Gini index

• Simplified version of Gini coefficient, developed by Corrado Gini in
1912

• One of the most commonly used measure to represent the
income distribution of a nation’s residents (measure of inequality)

• Gini index formulation:

G(t) =
∑
l 6=k

π̂k,t π̂l,t =
K∑

k=1

π̂k,t ·
∑
l 6=k

π̂l,t

=
K∑

k=1

π̂k,t · (1− π̂k,t) =
K∑

k=1

π̂k,t −
K∑

k=1

π̂2
k,t

= 1−
K∑

k=1

π̂2
k,t

Attribute Selection – Gini index

• Purity gain:

• impurity before splitting - impurity after splitting
• given a candidate split s of a node t yielding the children nodes

t1, t2, . . . , tZ the purity gain is given by:

∆G(t) = G(t)− Nt1

Nt
G(t1)− . . .− NtZ

Nt
G(tz)

where Nt is the number of instances in node t and Nt1 ,Nt2 , . . . ,NtZ
are the number of instances distributed among t1, t2, . . . ,TZ .

• Attribute selection: maximum purity gain

Attribute Selection – Shannon’s Entropy

• Entropy:

• Measure of disorder or uncertainty
• Raised in thermodynamics and statistical mechanics

• Shannon’s entropy:

• Introduced by Claude E. Shannon in 1948
• Provides an absolute limit on the best possible average length of

lossless encoding or compression of any communication

• Entropy computation for a node t :

E(t) = −
K∑

k=1

π̂k,t · log2[π̂k,t]

• Information gain:

∆E(t) = E(t)− Nt1

Nt
E(t1)− . . .− NtZ

Nt
E(tZ)

Attribute Selection – Gini vs Entropy

Attribute Selection – Gain Ratio

• Impurity functions issue: bias towards multi-valued attributes

• Subsets are more likely to be pure if there is a large number of
values
⇒ For non-binary trees, impurity functions (like Entropy and Gini index)

are biased towards choosing attributes with a large number of
values

⇒ This may result in overfitting (selection of an attribute that is
non-optimal for prediction)

• Gain ratio: a modification of the information gain that reduces its bias

• It corrects the information gain by taking the intrinsic information
of a split into account

Attribute Selection – Gain Ratio

• Intrinsic information: entropy of distribution of instances into branches
(a measure of the “spreading” of instances along branches):

SP(t) = −
Z∑

z=1

N(tz)

Nt
× log2

(
N(tz)

Nt

)

• The gain ratio is given by:

GR(t) =
∆E(t)
SP(t)

• Value of attribute decreases as intrinsic information gets larger

• Problem with gain ratio: it may overcompensate

• May choose an attribute just because its intrinsic information is
very low

• Standard fix: only consider attributes with greater than average
information gain

Attribute Selection – Weather Data

Attribute Selection – Weather Data

Split Strategies – Numeric Attributes

• Standard method: binary splits in the form

X < c0

• How to choose split point c0?
Straightforward:

• Evaluate score function for every possible split point of attribute
• Choose “best” split point
• Score for best split point is the optimum score for the attribute

• Computationally more demanding

Split Strategies – Numeric Attributes

• Example: Weather data – split on temperature attribute:

• E.g. temperature < 71.5: yes/4, no/2
temperature ≥ 71.5: yes/5, no/3

• Info([4,2],[5,3]) = 6/14 info([4,2]) + 8/14 info([5,3])
= 0.939

• Place split points halfway between values

• Can evaluate all split points in one pass!

Split Strategies – Numeric Attributes

• Binary Split used by: C4.5, CART, LMT, etc

• Some algorithms generate splits with more than two intervals
CAL5, FACT, REAL (Stern et al, 1998), etc
Bottom-up approach:

• Start with small “pure” intervals
• Merge adjacent intervals if certain conditions hold

Split Strategies – Categorical Attributes

• Ordered categorical attributes may be treated similarly to numeric ones

• For nominal attributes, two approaches:

• Start a new branch for each value

• Use gain ratio or other method to avoid bias

• Binary split of values:
• For every possible subset S of the attribute, evaluate the score

function for the rule in the form

X ∈ A

• Choose the optimum subset
• Score for best subset is the optimum score for the attribute

Algorithms for Classification Trees – Other
refinements

• Stop rules

• Minimum number of examples
• Minimum score gain

• Tree Pruning to avoid overfitting

• Treatment of missing data

• Attribute importance

Naïve Bayes

• Concept description under a probabilistic point of view:

• What is the probability of class y given the attribute vector x?

• Classes: y ∈ {1...K}

• Bayes’ Rule:
Pr(y ,x) = Pr(x) Pr(y |x)

Pr(y ,x) = Pr(y) Pr(x |y)

Equaling two Expressions:

Pr(y |x) =
Pr(y) Pr(x |y)

Pr(x)
=

Pr(y) Pr(x |y)∑K
k=1 Pr(k) Pr(x |k)

Obs: On above equation, notice that:

Pr(x) =
∑K

k=1
Pr(k ,x) =

∑K

k=1
Pr(k) Pr(x |k)

Naïve Bayes

• Bayes Rule:

Pr(y |x) =
Pr(y) Pr(x |y)∑K

k=1 Pr(k) Pr(x |k)

• Interpretation:

• Pr(y): priori probability (initial probability guess) for y
• Pr(x |y): likelihood of class y after observation x
• Pr(x |y) ≡ Pr(x1, x2, . . . , xM |y)

where xj is the observed value of attribute aj

• Naïve assumption: Attributes are

• equally important
• statistically independent (given the class value)

• I.e., knowing the value of one attribute says nothing about the value
of another (if the class is known)

These assumptions are expressed in the following equation:

Pr(x1, x2, . . . , xM |y) = Pr(x1|y) Pr(x2|y) . . . Pr(xM |y)

Naïve Bayes

• Bayes Rule:

Pr(y |x) =
Pr(y) Pr(x |y)∑K

k=1 Pr(k) Pr(x |k)

• Computing Pr(y):

• Relative frequency of class y in training set L

• Computing Pr(xj |y) for categorical attributes:

1 Count the absolute frequencies of each attribute value on class y
2 Normalize the frequencies by the number of instances of class y

Naïve Bayes – Weather Data

Naïve Bayes – Weather Data

• A new day:

Naïve Bayes – Extensions

• What if an attribute value doesn’t occur with every class value?
(e.g. “Humidity = high” for class “yes”)

• Probability will be zero!
• A posteriori probability will also be zero!

(No matter how likely the other values are!)

• Remedy: add 1 to the count for every attribute value-class combination
(Laplace estimator)

• Result: probabilities will never be zero!
(also: stabilizes probability estimates)

Naïve Bayes – Missing Values

• Missing data treatment is straightforward:

• Training: instance is not included in frequency count for attribute
value-class combination

• Classification: attribute will be omitted from calculation

• Example:

Naïve Bayes – Numeric Attributes

• Usual assumption: numeric attributes have a normal probability
distribution (given the class)
Parameters for each class k : mean µk , standard deviation σk

Probability density function (pdf):

f (x |µk , σk) =
1√

2πσk
exp

(
− (x − µk)2

2σ2
k

)
• Estimation of µk and σc are obtained from instances of class k

µk =
1

Nk

∑
xi |yi=k

xi

σk =

√
1

Nk − 1

∑
xi |yi=k

(xi − µk)2

Nk : number of instances of class k

Naïve Bayes – Weather Data

• Example density value:

f (temperature=66|yes) =
1√

2π6.2
exp

(
− (66− 73)2

26.22

)
= 0.0340

Naïve Bayes – Weather Data

• A new day:

• Missing values during training are not included in calculation of mean
and standard deviation

