

Introduction to Supervised Learning

Performance Evaluation

Marcelo S. Lauretto

Escola de Artes, Ciências e Humanidades, Universidade de São Paulo marcelolauretto@usp.br

Lima - Peru

Performance Evaluation

- Issues: training, testing
- Confusion matrix
- Performance indicators
- Holdout, cross-validation, bootstrap
- Predicting performance: confidence limits
- Comparing classification algorithms: t-test, non-parametric test
- Parameter tuning

Performance Evaluation

- How good is the classifier?
- Natural performance measure for classification problems: error rate
 - Success: instance's class is predicted correctly
 - Error: instance's class is predicted incorrectly Error rate: proportion of errors made over the whole set of instances
- Resubstitution error: error rate obtained from training data
 - Extremely optimistic particularly if the classifier overfits

Training & Test Sets

- Training set: instances used to train (induce) the classifier
- Test set: independent instances that have played no part in formation of classifier
 - Assumption: both training data and test data are representative samples of the underlying problem
- Generally, the larger the training data the better the classifier
- The larger the test data the more accurate the error estimate
- Holdout procedure: method of splitting original data into training and test set
 - Dilemma: ideally both training set and test set should be large!

Predicting Performance

- Assume the estimated error rate is 25%. How close is this to the true error rate?
 - Depends on the amount of test data
- Prediction is just like tossing a (biased!) coin
 - "Head" is a "success", "tail" is an "error"
- In statistics, a succession of independent events like this is called a Bernoulli process
 - Statistical theory provides us with confidence intervals for the true underlying proportion

Confidence Intervals for Success Rate

- We can say: the true success rate (denote by *p*) lies within a certain specified interval with a certain specified confidence
- Example: S = 750 successes in N = 1000 trials
 - Estimated success rate: 75%
 - How close is this to true success rate p?
 - Answer: with 80% confidence p in [73.2,76.7]
- Another example: S = 75 and N = 100
 - Estimated success rate: 75%
 - With 80% confidence p in [69.1,80.1]

Confidence Intervals for Success Rate

• Mean and variance for a Bernoulli trial:

•
$$\mu = \rho, V = \rho(1 - \rho)$$

- Expected success rate: sample mean $\hat{p} = S/N$
- Central Limit Theorem: For large enough N, p̂ follows a Normal Distribution with mean μ = p and variance V/N = p(1 − p)/N
- A *c*% probability interval [−*z* ≤ *X* ≤ *z*] for a random variable with mean 0 is given by:

$$\Pr[-z \le X \le z] = c\%$$

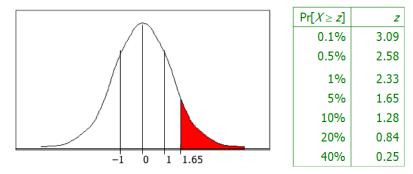
• For a symmetric distribution:

$$c = \Pr[-z \le X \le z] = 1 - 2\Pr[X \ge z]$$

$$\implies \qquad \Pr[X \ge z] = \frac{1 - c}{2}$$

Confidence Intervals for Success Rate – Bernoulli Process

• Confidence limits for a variable X with standard normal distribution (mean 0 and variance 1):



• Thus:

 $\Pr[-1.65 \le X \le +1.65] = 90\%$

To use this we have to standardize p̂ to have 0 mean and unit variance

Confidence Intervals – Standard Normal Distribution

$$\frac{\hat{p}-p}{\sqrt{p(1-p)/N}}$$

(i.e. subtract the mean and divide by the standard deviation)

Resulting equation:

$$\Pr\left[-z \le \frac{\hat{p} - p}{\sqrt{p(1 - p)/N}} \le z\right] = c$$

Transforming inequalities in equalities and solving for p:

$$\rho \in \left[\hat{\rho} + \frac{z^2}{2N} \pm z\sqrt{\frac{\hat{\rho}}{N} - \frac{\hat{\rho}^2}{N} + \frac{z^2}{4N^2}} \left/ \left(1 + \frac{z^2}{N}\right)\right]$$

Confidence Intervals – Standard Normal Distribution

- Examples
 - $\hat{p} = 75\%, N = 1000, c = 80\%$ (so that z = 1.28): $p \in [0.732, 0.767]$
 - $\hat{p} = 75\%$, N = 100, c = 80% (so that z = 1.28): $p \in [0.691, 0.801]$
 - $\hat{p} = 75\%, N = 10, c = 80\%$ (so that z = 1.28): $p \in [0.549, 0.881] !!$
- Normal approximation for Bernoulli processes is only valid for large N (i.e. N > 100)

Holdout estimation

- What to do if the amount of data is limited?
- The *holdout* method reserves a certain amount for testing and uses the remainder for training
 - Usually: one third for testing, the rest for training
- Problem: the samples might not be representative
 - Example: class might be missing in the test data
- Advanced version uses stratification
 - Ensures that each class is represented with approximately equal proportions in both subsets

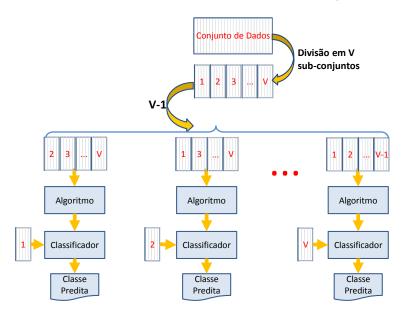
Repeated holdout method

- Holdout estimate can be made more reliable by repeating the process with different subsamples
 - In each iteration, a certain proportion is randomly selected for training (possibly with stratificiation)
 - The error rates on the different iterations are averaged to yield an overall error rate
- This is called the repeated holdout method
- Still not optimum: the different test sets overlap
 - Can we prevent overlapping?
- Problem: the samples might not be representative
 - Example: class might be missing in the test data
- Advanced version uses stratification
 - Ensures that each class is represented with approximately equal proportions in both subsets

Cross-validation

- Cross-validation avoids overlapping test sets
 - First step: split data into k subsets of equal size
 - Second step: use each subset in turn for testing, the remainder for training
- Called *k-fold cross-validation*
- Subsets may be stratified
- The error estimates are averaged to yield an overall error estimate
- Standard method for evaluation: stratified ten-fold cross-validation
- Best variant: Repeated stratified cross-validation
 - E.g. ten-fold cross-validation is repeated ten times and results are averaged (reduces the variance)

Cross-validation – Diagram



Leave-One-Out Cross-validation

- Leave-One-Out: particular form of cross-validation
 - · Set number of folds to number of training instances
 - · I.e., for n training instances, build classifier n times
- Pros:
 - Makes best use of the data for training
 - Involves no random subsampling
- Cons:
 - Very computationally expensive
 - Cannot be stratified
 - There is only one instance in each test set!
 - Extreme (artificial) illustration: random dataset with the same number of instances of each of two classes
 - Best inducer predicts majority class
 - 50% accuracy on fresh data
 - Leave-One-Out yield an estimated error of 100%!

Confusion Matrix

- Applying the classifier on a test set yields a *confusion matrix*, a bi-dimensional contingency table formed by the absolute frequencies of real and predicted classes of test instances
- For binary classification (two classes):

	Classe Predita		
Classe Real	VP	FN	POS
	Verdadeiro Positivo	Falso Negativo	Positivo Total (Real)
	FP	VN	NEG
	Falso Positivo	Verdadeiro Negativo	Negativo Total (Real)
	PP Positivo Total (Predito)	PN Negativo Total (Predito)	

Confusion Matrix

	Classe Predita		
Classe Real	VP	FN	POS
	Verdadeiro Positivo	Falso Negativo	Positivo Total (Real)
	FP	VN	NEG
	Falso Positivo	Verdadeiro Negativo	Negativo Total (Real)
	PP Positivo Total (Predito)	PN Negativo Total (Predito)	

- TP (True Positives), TN (True Negatives): instances classified correctly
- FN (False Negatives), FP (False Positives): misclassified instances
- POS: positive instances: *POS* = *TP* + *FN* ;
- NEG: negative instances *NEG* = *FP* + *TN*;
- PP (Prediced Positive): PP = TP + FP
- PN (Prediced Negative): PN = TN + FN.

Performance Measures

- Total error rate, total accuracy rate: The most used measures $E_r = (FN + FP)/(NEG + POS)$; $Acc = (1 E_r)$
- True Positive Rate (also called sensitivity or recall): TP_r = TP/POS True Negative Rate (also called specificity): TN_r = TN/NEG False Negative Rate: FN_r = FN/POS False Positive Rate: FP_r = FP/NEG
- *Precision rate:* Proportion of positive class instances among those predicted as positive.

 $\textit{Prec}_r = \textit{TP}/\textit{PP}$

- Good measure for high-cost misclassification of negative cases:
 - In stock markets, if a trader decides to start a buy & hold operation, its success rate must be high
- Ineffective for very low predicted positive rates
 - Usually, low $PP \Rightarrow high FN$
 - It is not defined if *PP* = 0

Performance Measures – Example

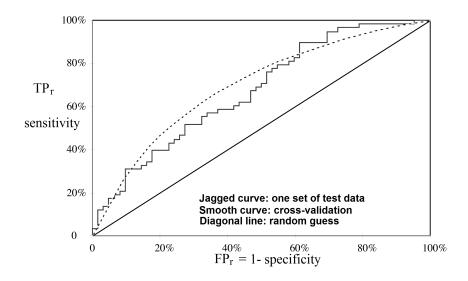
	Classe Predita		
Classe Real	VP = 6	FN = 4	POS = 10
	FP = 1	VN = 89	NEG = 90
	PP = 7	PN = 93	

- $TP_r = 6/10 = 60\%$; $TN_r = 89/90 = 98.9\%$ $FN_r = 4/10 = 40\%$; $FP_r = 01/90 = 1.1\%$
- Total error rate: $ET_r = (4+1)/(10+90) = 5\%$
- Precision rate: $Prec_r = 6/7 = 85.7\%$
- Excellent for predicting negative class; very bad for predicting positive class

ROC Curve

- *ROC*: Receiver Operating Characteristic
 - Used in signal detection to show tradeoff between hit rate and false alarm rate over noisy channel http://psych.hanover.edu/JavaTest/SDT/index.html
 - Common use for calibrating medical diagnostic tests
 http://gim.unmc.edu/dxtests/Default.htm
- ROC curve is obtained by plotting the *FP_r* (or 1–specificity) on horizontal axis and *TP_r* (sensitivity) on vertical axis
- Suitable for
 - tuning parameters of algorithms for the adequate trade-off between sensitivity and specificity
 - comparing algorithms performances

ROC Curve

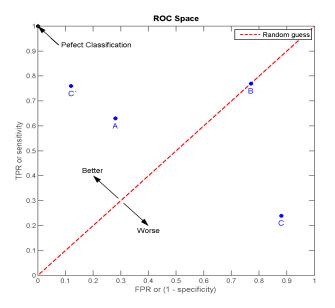


ROC Curve

- Optimum point: Perfect classification
 - 100% true positives, 0% false positives
- The closer the point (FP_r, TP_r) to (0%, 100%), the better the algorithm
- A completely random guess (with variable probability of positive assignment) would give a point along a diagonal line (*line of no-discrimination*)

```
Source of image in next slide:
"ROC space-2" by ROC_space.png: Indonderivative work:
Kai walz (talk) - ROC_space.png.
Licensed under CC BY-SA 3.0 via Wikimedia Commons
https://commons.wikimedia.org/wiki/File:ROC_space-2.png#/media/
File:ROC_space-2.png
```

ROC – Examples



ROC – historical note

- ROC analysis is part of a field called "Signal Dectection Theory"developed during World War II for the analysis of radar images.
 - Radar operators had to decide whether a blip on the screen represented an enemy target, a friendly ship, or just noise.
 - Signal detection theory measures the ability of radar receiver operators to make these important distinctions.
 - Their ability to do so was called the Receiver Operating Characteristics.
 - It was not until the 1970's that signal detection theory was recognized as useful for interpreting medical test results.

Area under the ROC Curve

- Area under the curve (AUC): one of ROC summary statistics
- Corresponds to the integral

$$\int_{-\infty}^{\infty} TP_r(t) FP_r(t) dt$$

where t is a (continuous) sensitivity-related parameter

- Evaluation:
 - AUC = 1: perfect classifier
 - AUC=0.5: worthless classifier (random guess)
 - In Medicine: criterion for classifying the accuracy of a diagnostic test:
 - .90 1 = excellent (A)
 - .80 .90 = good (B)
 - .70 .80 = fair (C)
 - .60 .70 = poor (D)
 - .50 .60 = fail (F)

Area under the ROC Curve

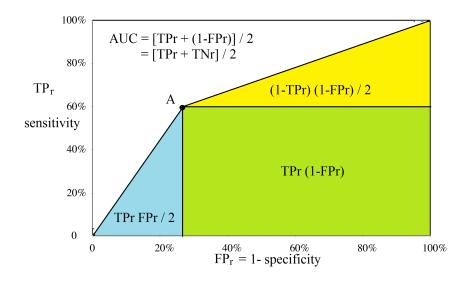
- AUC measures *discrimination*, that is, the ability of a classifier to correctly classify instances of positive and negative classes
 - Probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one (assuming 'positive' ranks higher than 'negative')
- Computation:
 - For a single test point (corresponding to a unique test sample and unique *t* value), the AUC may be estimated by the mean and sensitivity and specificity:

$$AUC = (TP_r + TN_r)/2$$

(Figure in the next slide)

 Given several test points, build trapeziods under the curve as an approximation of area (extension of the single point case above)

Area under the ROC Curve – Estimation



Unbalanced Datasets: Accuracy vs AUC

- Unbalanced datasets:
 - High prevalence of one class
- In such cases, Accuracy measure may be (optimistically) misleading
- Taking the previous example:

	Classe Predita		
Classe Real	VP = 6	FN = 4	POS = 10
	FP = 1	VN = 89	NEG = 90
	PP = 7	PN = 93	

- $TP_r = 60\%$; $TN_r = 98.9\%$; $FN_r = 40\%$; $FP_r = 1.1\%$
- Acc = 95%
 High accuracy rate, but... an error rate of 40% in positive class!

Unbalanced Datasets: Accuracy vs AUC

- Taking the previous example:
 - $TP_r = 0.6$; $TN_r = 0.989$; $FN_r = 0.4$; $FP_r = 0.011$
 - *Acc* = 95%

High accuracy rate, but... an error rate of 40% in positive class!

- If positive class corresponded to a disease, 40% of ill patients would be classified as healthy!
- AUC estimate:

$$AUC = (TP_r + TN_r)/2 = (0.6 + 0.989)/2 = 0.795$$

According to AUC reference table, just fair!

Comparing Learning Algorithms

- Frequent question: which of two learning schemes performs better?
- Note: this is domain dependent!
- Obvious way: compare 10-fold CV estimates
- Generally sufficient in applications (we don't loose if the chosen method is not truly better)
- However, what about machine learning research?
 - · Need to show convincingly that a particular method works better
- A possible answer for this question is to use statistical techniques
 - Confidence intervals and significance tests

Comparing Algorithms – Confidence Intervals

- Notation:
 - ψ : classification algorithm
 - $\psi_{\mathcal{L}_{tr}}(\bullet)$: a classifier inducted by algorithm ψ using training set \mathcal{L}_{tr}
 - $\psi_{\mathcal{L}_{tr}}(\mathcal{L}_{ts})$: classes predicted by $\psi_{\mathcal{L}_{tr}}(\bullet)$ for instances of set \mathcal{L}_{ts}
 - *M*_{L_{ts}, ψ_{L_{tr}}(L_{ts})}: the confusion matrix yielded by true and predicted classes of L_{ts}
 - $h\left(M_{\mathcal{L}_{ts},\psi_{\mathcal{L}_{tr}}(\mathcal{L}_{ts})}\right)$: a performance measure (accuracy, total error, AUC, etc) yielded from confusion matrix $M_{\mathcal{L}_{ts},\psi_{\mathcal{L}_{tr}}(\mathcal{L}_{ts})}$
- Given two distinct algorithms ψ and φ, the random variable of interest is the difference between the measured performances:

$$\delta = h\left(M_{\mathcal{L}_{ts},\psi_{\mathcal{L}_{tr}}(\mathcal{L}_{ts})}\right) - h\left(M_{\mathcal{L}_{ts},\varphi_{\mathcal{L}_{tr}}(\mathcal{L}_{ts})}\right)$$
$$\forall (\mathcal{L}_{ts},\mathcal{L}_{tr}) \in \mathcal{P}(\mathcal{X} \times \{1 \dots K\})^{2}.$$

Comparing Algorithms – Confidence Intervals

- We denote by $\mu_{\delta} = E_{\mathcal{P}(\mathcal{X} \times \{1...K\})^2}(\delta)$
 - i.e. the mean of performance differences between ψ_A and ψ_B over all possible pairs of training and sample tests
- If algorithms ψ and φ perform equally, then $\mu_{\delta} = 0$.
- μ_{δ} is unknown \Rightarrow we may obtain a confidence interval for it.
- One (1 α)% confidence interval for μ_δ:
 - Interval [*a*, *b*] yielded from a sample that should include the true value of μ_δ, with probability 1 − α,
 - We say that θ belongs to interval [a, b] with confidence 1α .
- We shall see a method for obtaining the confidence interval via Cross Validation

Comparing Algorithms – Cross Validation

Input: L: Original dataset V: Number of CV folds

Partition \mathcal{L} in *V* disjoinct subsets $\mathcal{L}_1, \mathcal{L}_2, ..., \mathcal{L}_V$ of the same size for *v* from 1 to *V* do

Take \mathcal{L}_{v} as test set and $\mathcal{L}_{v}^{c} = \mathcal{L} - \mathcal{L}_{v}$ as training set Build classifiers $\psi_{\mathcal{L}_{v}^{c}}(\bullet)$ and $\varphi_{\mathcal{L}_{v}^{c}}(\bullet)$ using \mathcal{L}_{v}^{c} Apply both classifiers on test set \mathcal{L}_{v} , yieldind the confusion matrices $M_{\mathcal{L}_{v},\psi_{\mathcal{L}_{v}^{c}}(\mathcal{L}_{v})}$ and $M_{\mathcal{L}_{v},\varphi_{\mathcal{L}_{v}^{c}}(\mathcal{L}_{v})}$ Compute the performance difference:

$$\delta_{v} = h\left(M_{\mathcal{L}_{v},\psi_{\mathcal{L}_{v}^{c}}(\mathcal{L}_{v})}\right) - h\left(M_{\mathcal{L}_{v},\varphi_{\mathcal{L}_{v}^{c}}(\mathcal{L}_{v})}\right)$$

end

Return the mean of $\delta_1, \delta_2, \ldots, \delta_V$ and its corresponding standard error:

$$\overline{\delta} = \frac{1}{V} \sum_{\nu=1}^{V} \delta_{\nu}, s_{\overline{\delta}} = \sqrt{\frac{1}{V(V-1)} \sum_{i=1}^{V} (\delta_{i} - \overline{\delta})^{2}}$$

Comparing Algorithms – Confidence Intervals

- If V is large (V > 100): approximation by standard sormal distribution
- If V is small: approximation by Student t distribution
- Confidence interval for μ_{δ} using Student t distribution:

$$\mu_{\delta} \in [a, b] = \left[\overline{\delta} \pm z \; s_{\overline{\delta}}
ight]$$

where *z* represents the quantile $1 - \alpha/2$ of Student t distribution with V - 1 degrees of freedom.

Comparing Algorithms – Confidence Intervals

- To test the hipothesys $H_0: \mu_{\delta} = 0$ (i.e. algorithms ψ and φ perform equally well):
 - Build the confidence interval [*a*, *b*]
 - if $0 \in [a, b]$: we don't reject reject H_0
 - \Rightarrow Differences of performances are *not* significant on a (1α) % confidence level
 - \Rightarrow Algorithms are considered as equivalent in performance
 - if 0 ∉ [a, b]: we reject H₀
 - \Rightarrow Differences of performances are significant on a (1α) % confidence level

 \Rightarrow The algorithm with larger CV average performance is considered better

- Usual values for the confidence level:
 - 0.90, 0.95 e 0.99 (α = 0.1, 0.05 e 0.01, respectively)
- The higher the confidence level:
 - the larger (less precise) the interval
 - the higher the chance of accepting H_0