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Performance Evaluation

• Issues: training, testing

• Confusion matrix

• Performance indicators

• Holdout, cross-validation, bootstrap

• Predicting performance: confidence limits

• Comparing classification algorithms: t-test, non-parametric test

• Parameter tuning



Performance Evaluation

• How good is the classifier?

• Natural performance measure for classification problems: error rate

• Success: instance’s class is predicted correctly
• Error: instance’s class is predicted incorrectly Error rate:

proportion of errors made over the whole set of instances

• Resubstitution error: error rate obtained from training data

• Extremely optimistic – particularly if the classifier overfits



Training & Test Sets

• Training set: instances used to train (induce) the classifier

• Test set: independent instances that have played no part in formation
of classifier

• Assumption: both training data and test data are representative
samples of the underlying problem

• Generally, the larger the training data the better the classifier

• The larger the test data the more accurate the error estimate

• Holdout procedure: method of splitting original data into training and
test set

• Dilemma: ideally both training set and test set should be large!



Predicting Performance

• Assume the estimated error rate is 25%. How close is this to the true
error rate?

• Depends on the amount of test data

• Prediction is just like tossing a (biased!) coin

• “Head” is a “success”, “tail” is an “error”

• In statistics, a succession of independent events like this is called a
Bernoulli process

• Statistical theory provides us with confidence intervals for the true
underlying proportion



Confidence Intervals for Success Rate

• We can say: the true success rate (denote by p) lies within a certain
specified interval with a certain specified confidence

• Example: S = 750 successes in N = 1000 trials

• Estimated success rate: 75%
• How close is this to true success rate p?

• Answer: with 80% confidence p in [73.2,76.7]

• Another example: S = 75 and N = 100

• Estimated success rate: 75%
• With 80% confidence p in [69.1,80.1]



Confidence Intervals for Success Rate

• Mean and variance for a Bernoulli trial:

• µ = p, V = p(1− p)

• Expected success rate: sample mean p̂ = S/N

• Central Limit Theorem: For large enough N, p̂ follows a Normal
Distribution with mean µ = p and variance V/N = p(1− p)/N

• A c% probability interval [−z ≤ X ≤ z] for a random variable with mean
0 is given by:

Pr[−z ≤ X ≤ z] = c%

• For a symmetric distribution:

c = Pr[−z ≤ X ≤ z] = 1− 2 Pr[X ≥ z]

=⇒ Pr[X ≥ z] =
1− c

2



Confidence Intervals for Success Rate –
Bernoulli Process

• Confidence limits for a variable X with standard normal distribution
(mean 0 and variance 1):

• Thus:
Pr[−1.65 ≤ X ≤ +1.65] = 90%

• To use this we have to standardize p̂ to have 0 mean and unit variance



Confidence Intervals – Standard Normal
Distribution

• Transformed value for p̂:
p̂ − p√

p(1− p)/N
(i.e. subtract the mean and divide by the standard deviation)

• Resulting equation:

Pr

[
−z ≤ p̂ − p√

p(1− p)/N
≤ z

]
= c

• Transforming inequalities in equalities and solving for p:

p ∈

[
p̂ +

z2

2N
± z

√
p̂
N
− p̂2

N
+

z2

4N2

/(
1 +

z2

N

)]



Confidence Intervals – Standard Normal
Distribution

• Examples

• p̂ = 75%,N = 1000, c = 80% (so that z = 1.28):
p ∈ [0.732,0.767]

• p̂ = 75%,N = 100, c = 80% (so that z = 1.28):
p ∈ [0.691,0.801]

• p̂ = 75%,N = 10, c = 80% (so that z = 1.28):
p ∈ [0.549,0.881] !!

• Normal approximation for Bernoulli processes is only valid for large N
(i.e. N > 100)



Holdout estimation

• What to do if the amount of data is limited?

• The holdout method reserves a certain amount for testing and uses the
remainder for training

• Usually: one third for testing, the rest for training

• Problem: the samples might not be representative

• Example: class might be missing in the test data

• Advanced version uses stratification

• Ensures that each class is represented with approximately equal
proportions in both subsets



Repeated holdout method

• Holdout estimate can be made more reliable by repeating the process
with different subsamples

• In each iteration, a certain proportion is randomly selected for
training (possibly with stratificiation)

• The error rates on the different iterations are averaged to yield an
overall error rate

• This is called the repeated holdout method

• Still not optimum: the different test sets overlap

• Can we prevent overlapping?

• Problem: the samples might not be representative

• Example: class might be missing in the test data

• Advanced version uses stratification

• Ensures that each class is represented with approximately equal
proportions in both subsets



Cross-validation

• Cross-validation avoids overlapping test sets

• First step: split data into k subsets of equal size
• Second step: use each subset in turn for testing, the remainder

for training

• Called k-fold cross-validation

• Subsets may be stratified

• The error estimates are averaged to yield an overall error estimate

• Standard method for evaluation: stratified ten-fold cross-validation

• Best variant: Repeated stratified cross-validation

• E.g. ten-fold cross-validation is repeated ten times and results are
averaged (reduces the variance)



Cross-validation – Diagram
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Leave-One-Out Cross-validation

• Leave-One-Out: particular form of cross-validation

• Set number of folds to number of training instances
• I.e., for n training instances, build classifier n times

• Pros:

• Makes best use of the data for training
• Involves no random subsampling

• Cons:

• Very computationally expensive
• Cannot be stratified

• There is only one instance in each test set!
• Extreme (artificial) illustration: random dataset with the same

number of instances of each of two classes
• Best inducer predicts majority class
• 50% accuracy on fresh data
• Leave-One-Out yield an estimated error of 100%!



Confusion Matrix

• Applying the classifier on a test set yields a confusion matrix, a
bi-dimensional contingency table formed by the absolute frequencies of
real and predicted classes of test instances

• For binary classification (two classes):



Confusion Matrix

•

• TP (True Positives), TN (True Negatives): instances classified
correctly

• FN (False Negatives), FP (False Positives): misclassified
instances

• POS: positive instances: POS = TP + FN ;
• NEG: negative instances NEG = FP + TN;
• PP (Prediced Positive): PP = TP + FP
• PN (Prediced Negative): PN = TN + FN.



Performance Measures

• Total error rate, total accuracy rate: The most used measures
Er = (FN + FP)/(NEG + POS); Acc = (1− Er )

• True Positive Rate (also called sensitivity or recall): TPr = TP/POS
True Negative Rate (also called specificity): TNr = TN/NEG
False Negative Rate: FNr = FN/POS
False Positive Rate: FPr = FP/NEG

• Precision rate: Proportion of positive class instances among those
predicted as positive.
Precr = TP/PP

• Good measure for high-cost misclassification of negative cases:
• In stock markets, if a trader decides to start a buy & hold operation,

its success rate must be high
• Ineffective for very low predicted positive rates

• Usually, low PP ⇒ high FN
• It is not defined if PP = 0



Performance Measures – Example

• TPr = 6/10 = 60%; TNr = 89/90 = 98.9%
FNr = 4/10 = 40%; FPr = 01/90 = 1.1%

• Total error rate: ETr = (4 + 1)/(10 + 90) = 5%

• Precision rate: Precr = 6/7 = 85.7%

• Excellent for predicting negative class; very bad for predicting positive
class



ROC Curve

• ROC: Receiver Operating Characteristic

• Used in signal detection to show tradeoff between hit rate and
false alarm rate over noisy channel
http://psych.hanover.edu/JavaTest/SDT/index.html

• Common use for calibrating medical diagnostic tests
http://gim.unmc.edu/dxtests/Default.htm

• ROC curve is obtained by plotting the FPr (or 1−specificity) on
horizontal axis and TPr (sensitivity) on vertical axis

• Suitable for

• tuning parameters of algorithms for the adequate trade-off
between sensitivity and specificity

• comparing algorithms performances



ROC Curve



ROC Curve

• Optimum point: Perfect classification

• 100% true positives, 0% false positives

• The closer the point (FPr ,TPr ) to (0%,100%), the better the algorithm

• A completely random guess (with variable probability of positive
assignment) would give a point along a diagonal line (line of
no-discrimination)

Source of image in next slide:
"ROC space-2" by ROC_space.png: Indonderivative work:
Kai walz (talk) - ROC_space.png.
Licensed under CC BY-SA 3.0 via Wikimedia Commons
https://commons.wikimedia.org/wiki/File:ROC_space-2.png#/media/

File:ROC_space-2.png



ROC – Examples



ROC – historical note

• ROC analysis is part of a field called "Signal Dectection
Theory"developed during World War II for the analysis of radar images.

• Radar operators had to decide whether a blip on the screen
represented an enemy target, a friendly ship, or just noise.

• Signal detection theory measures the ability of radar receiver
operators to make these important distinctions.

• Their ability to do so was called the Receiver Operating
Characteristics.

• It was not until the 1970’s that signal detection theory was
recognized as useful for interpreting medical test results.



Area under the ROC Curve

• Area under the curve (AUC): one of ROC summary statistics

• Corresponds to the integral∫ ∞
−∞

TPr (t)FPr (t)dt

where t is a (continuous) sensitivity-related parameter

• Evaluation:

• AUC = 1: perfect classifier
• AUC=0.5: worthless classifier (random guess)
• In Medicine: criterion for classifying the accuracy of a diagnostic

test:
• .90− 1 = excellent (A)
• .80− .90 = good (B)
• .70− .80 = fair (C)
• .60− .70 = poor (D)
• .50− .60 = fail (F)



Area under the ROC Curve

• AUC measures discrimination, that is, the ability of a classifier to
correctly classify instances of positive and negative classes

• Probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one (assuming
’positive’ ranks higher than ’negative’)

• Computation:

• For a single test point (corresponding to a unique test sample and
unique t value), the AUC may be estimated by the mean and
sensitivity and specificity:

AUC = (TPr + TNr )/2

(Figure in the next slide)
• Given several test points, build trapeziods under the curve as an

approximation of area (extension of the single point case above)



Area under the ROC Curve – Estimation



Unbalanced Datasets: Accuracy vs AUC

• Unbalanced datasets:

• High prevalence of one class

• In such cases, Accuracy measure may be (optimistically) misleading

• Taking the previous example:

• TPr = 60%; TNr = 98.9%; FNr = 40%; FPr = 1.1%
• Acc = 95%

High accuracy rate, but... an error rate of 40% in positive class!



Unbalanced Datasets: Accuracy vs AUC

• Taking the previous example:

• TPr = 0.6; TNr = 0.989; FNr = 0.4; FPr = 0.011
• Acc = 95%

High accuracy rate, but... an error rate of 40% in positive class!
• If positive class corresponded to a disease, 40% of ill patients

would be classified as healthy!

• AUC estimate:

AUC = (TPr + TNr )/2 = (0.6 + 0.989)/2 = 0.795

According to AUC reference table, just fair!



Comparing Learning Algorithms

• Frequent question: which of two learning schemes performs better?

• Note: this is domain dependent!

• Obvious way: compare 10-fold CV estimates

• Generally sufficient in applications (we don’t loose if the chosen
method is not truly better)

• However, what about machine learning research?

• Need to show convincingly that a particular method works better

• A possible answer for this question is to use statistical techniques

• Confidence intervals and significance tests



Comparing Algorithms – Confidence Intervals

• Notation:

• ψ: classification algorithm
• ψLtr (•): a classifier inducted by algorithm ψ using training set Ltr
• ψLtr (Lts): classes predicted by ψLtr (•) for instances of set Lts
• MLts,ψLtr (Lts): the confusion matrix yielded by true and predicted

classes of Lts

• h
(

MLts,ψLtr (Lts)

)
: a performance measure (accuracy, total error,

AUC, etc) yielded from confusion matrix MLts,ψLtr (Lts)

• Given two distinct algorithms ψ and ϕ, the random variable of interest
is the difference between the measured performances:

δ = h
(

MLts,ψLtr (Lts)

)
− h

(
MLts,ϕLtr (Lts)

)
∀(Lts,Ltr ) ∈ P(X × {1 . . .K})2.



Comparing Algorithms – Confidence Intervals

• We denote by µδ = EP(X×{1...K})2(δ)

• i.e. the mean of performance differences between ψA and ψB over
all possible pairs of training and sample tests

• If algorithms ψ and ϕ perform equally, then µδ = 0.

• µδ is unknown⇒ we may obtain a confidence interval for it.

• One (1− α)% confidence interval for µδ:

• Interval [a,b] yielded from a sample that should include the true
value of µδ, with probability 1− α,

• We say that θ belongs to interval [a,b] with confidence 1− α.

• We shall see a method for obtaining the confidence interval via Cross
Validation



Comparing Algorithms – Cross Validation

Input: L: Original dataset V : Number of CV folds

Partition L in V disjoinct subsets L1,L2, ...,LV of the same size
for v from 1 to V do

Take Lv as test set and Lc
v = L − Lv as training set

Build classifiers ψLc
v
(•) and ϕLc

v
(•) using Lc

v
Apply both classifiers on test set Lv , yieldind the confusion matrices
MLv ,ψLc

v
(Lv ) and MLv ,ϕLc

v
(Lv )

Compute the performance difference:

δv = h
(

MLv ,ψLc
v
(Lv )

)
− h

(
MLv ,ϕLc

v
(Lv )

)
end
Return the mean of δ1, δ2, . . . , δV and its corresponding standard error:

δ =
1
V

∑V

v=1
δv , sδ =

√
1

V (V − 1)

∑V

i=1
(δi − δ)2



Comparing Algorithms – Confidence Intervals

• If V is large (V > 100): approximation by standard sormal distribution

• If V is small: approximation by Student t distribution

• Confidence interval for µδ using Student t distribution:

µδ ∈ [a,b] =
[
δ ± z sδ

]
where z represents the quantile 1− α/2 of Student t distribution with
V − 1 degrees of freedom.



Comparing Algorithms – Confidence Intervals

• To test the hipothesys H0 : µδ = 0 (i.e. algorithms ψ and ϕ perform
equally well):
• Build the confidence interval [a,b]
• if 0 ∈ [a,b]: we don’t reject reject H0
⇒ Differences of performances are not significant on a (1− α)%
confidence level
⇒ Algorithms are considered as equivalent in performance

• if 0 /∈ [a,b]: we reject H0
⇒ Differences of performances are significant on a (1− α)%
confidence level
⇒ The algorithm with larger CV average performance is
considered better

• Usual values for the confidence level:
• 0.90,0.95 e 0.99 (α = 0.1,0.05 e 0.01, respectively)

• The higher the confidence level:
• the larger (less precise) the interval
• the higher the chance of accepting H0


