
Evaluation Studies of Software Testing Research in
the Brazilian Symposium on Software Engineering

Otávio Augusto Lazzarini Lemos∗, Fabiano Cutigi Ferrari†, Marcelo Medeiros Eler‡,
José Carlos Maldonado‡, Paulo Cesar Masiero‡

∗Science and Technology Department – Federal University of São Paulo at S. J. dos Campos – Brazil
Email: otavio.lemos@unifesp.br

†Computing Department – Federal University of São Carlos – Brazil
Email: fabiano@ufscar.br

‡Computer Systems Department – University of São Paulo at São Carlos – Brazil
Email: {mareler, jcmaldon, masiero}@icmc.usp.br

Abstract—Experimentation is the traditional way of identifying
cause-effect relationships in scientific research. Lately, there has
been an increasing understanding that experiments and other
forms of evaluation should be more thoroughly disseminated
among computer science and, in particular, Software Engineer-
ing (SE) researchers. Software testing (ST) is an important
SE topic, where experiments are particularly valuable: since
cost constraints and high effectiveness goals are common within
this subfield, cost/benefit characteristics have to be adequately
evaluated to deem a specific approach useful or not. This paper
reports on a historical perspective of the evaluation studies
present in ST research published in the Brazilian Symposium
on Software Engineering (SBES). The survey characterizes the
software testing-related papers published in the 24-year history
of SBES, investigates the types of evaluation presented in these
studies – when they were presented at all – and whether the
number of evaluations has increased over the years. Additionally,
the survey also brings a preliminary characterization of the
Brazilian software testing community that adopts SBES as a
vehicle to publish its research. Results show that the number of
papers that present evaluation studies have significantly increased
over the years. However, on the downside, amongst the papers
that described some kind of evaluation, only 20% performed
more rigorous evaluations (e.g. experiments or case studies in
the industrial context), whereas 80% described exploratory, less
rigorous case studies.

I. INTRODUCTION

There is a common knowledge that science in general devel-
ops through theory and experimentation. Theory tries to define
the nature and causes of a problem, while experimentation
may confirm or refute such definitions. On the other hand,
experimentation may also find new phenomena that can be
explained through a theory [1]. Therefore, the application
of experiments and other types of evaluation is considered
essential to the development of any scientific field.

Several computer science researchers feel that our field
has not yet insisted enough on experimentation (e.g. [2]).
This is also true with respect to the software engineering
(SE) community. Victor Basili is one of the voices that have

been insisting on a more mature field of SE, where rigorous
evaluation is part of any developed research. In fact, although
the origins of SE can be dated back to the famous 1968 NATO
conference, it cannot be said to have become an empirical
science until the 1970s, with the advent of Basili’s work [3].
Nevertheless, even though there has long been a positive
encouragement on the application of adequate evaluation in
SE, a 2005 survey showed that only 1.9% of the work
published on prestigious SE venues until that date have applied
controlled experiments [4].

The Brazilian Symposium on Software Engineering (SBES,
from the Portuguese acronym) is the premier Brazilian SE con-
ference. SBES has been held annually since 1987, summing
up 24 editions up to 2010. Lately, the conference has been
gathering nearly 500 people, including researchers, students,
and practitioners working on the field [5]. If the Brazilian
symposium is to grow into a respectable community, we must
also take into account how research work published in SBES
is being evaluated.

Software testing is a very important and prominent SE
subfield and several papers published in the SBES history
fall into this category. Since cost constraints and high ef-
fectiveness goals are common within software testing, every
novel approach has to be adequately evaluated according to
these characteristics to be deemed useful or not. In fact,
experimentation and other types of evaluation is an essential
part of research in software testing [6]. For instance, at
many times one is interested in comparing the fault-detection
effectiveness of testing criteria used to derive test cases. In
this case experimentation is a handy tool to obtain evidence
about this question [6].

In this paper we present a survey that serves as an initial
assessment of the dissemination of adequate evaluation of
software testing research in SBES. We have analyzed the 24
available SBES proceedings and characterized the evaluation

2011 25th Brazilian Symposium on Software Engineering

978-0-7695-4603-2/11 $26.00 © 2011 IEEE

DOI 10.1109/SBES.2011.30

56

studies presented in papers related to software testing. We
categorized the papers within the software testing field, col-
lected information about authors and affiliations, and classified
the presented evaluations, looking into its evolution along the
symposium’s history.

Our assessment shows that the number of evaluations pre-
sented in SBES papers is increasing significantly along the
years. However, our data also shows that there is still room
for improvement in this area, specially with respect to the
rigor of the conducted studies. In particular, we notice a lack
of publications reporting controlled or quasi experiments in-
volving software testing research. The remainder of this paper
is structured as follows. Section II presents basic concepts
about evaluation in SE and software testing and Section III
describes the research method used to select and classify the
papers in the survey and other characteristics of our study.
Section IV presents the results of our survey and Section V
discusses such results. Finally, Section VI concludes the paper,
presenting some ideas to improve software testing evaluation
in the future of SBES.

II. BACKGROUND

There are many types of evaluation studies that can be
applied to software engineering research. Zannier et al. [7]
classifies them into the following: controlled experiment, quasi
experiment, case study, exploratory case study, experience
report, meta-analysis, example application, survey, and discus-
sion. Each of these types has a different level of rigor. In this
paper we use the same classification to characterize evaluation
studies in software testing research published in SBES. In the
following we synthesize Zannier et al.’s classification.

Controlled experiments apply random assignment of treat-
ments to subjects, contain large sample sizes (> 10 subjects),
formulate hypotheses, select an independent variable, and ap-
ply random sampling; while quasi experiments are controlled
experiments with one or more of its characteristics missing.
Case studies state a research question and unit(s) of analysis,
report a logic link between data and propositions, provide
criteria for interpreting findings, and are performed in “real-
world” scenarios; while exploratory case studies are case
studies with one or more of its characteristics missing.

Experience reports are retrospective reports with no propo-
sitions, do not necessarily contain answers to how or why
some findings were attained, and often include lessons learned.
Meta-Analyses analyze a body of similar studies to reach
a common result; example applications only describe an
application to assist the definition of the approaches (these
are commonly alleged as “evaluations” or “validations” of the
study). Surveys collect answers to structured or unstructured
questionnaires given to participants; while discussions provide
qualitative, textual, and opinion-related evaluation.

It is important to notice that, in general, SE is regarded as
a discipline that needs to improve on the use of experiments
and more rigorous forms of evaluation. However, as reported
by Zannier et al. [7], the community seems to be evolving
significantly with this respect over the years. For instance,
over the lifetime of the International Conference on Software
Engineering (ICSE) until 2006, there was a significant increase
in the number of papers with an evaluation component. If
this is true with respect to the international community, an
important question is whether it it also holds to more local
communities such as SBES, with respect to more specific
fields such as Software Testing.

A. Software Testing Research and Evaluation

Software testing can be defined as the execution of a pro-
gram against test cases with the intent of revealing faults [8].
The different testing techniques are defined based on the
artifact used to derive test cases. Functional – or black-box –
testing derives test cases from the specification or description
of a program; structural – or white-box – testing derives test
cases from implementations; fault-based testing derives test
cases from fault models based on common mistakes committed
by programmers; and model-based testing derives test cases
from system specification models. To deem a software system
correct, one could test every possible element of the system’s
input domain and check whether the output is consistent with
the expected output. However, even for simple programs this
is usually infeasible, because the input domains tend to be
very large (imagine, for instance, the input space of a compiler
system) [8]. Therefore, a large portion of testing research focus
on proposing ways to select meaningful subsets of test cases to
enhance the chance of revealing faults. Based on the categories
of testing techniques described above, several testing selection
criteria were proposed [9].

Besides testing techniques and criteria, there are many
other aspects involved in the testing activity. For instance,
in general, it is too expensive to test programs manually;
therefore, software testing usually relies on tools to automate
the test case generation, execution, and results gathering. After
faults are revealed while testing the programs, they must be
localized and fixed. This activity is usually not included under
the software testing activity, being called debugging. Since
it is closely related to testing, we decided to include papers
concerned with it in our survey. Other topics that are important
to software testing and were included are the following: fault-
injection1, which consists in intentionally introducing known
failures into the system during its execution to evaluate if
the system is robust enough to recover without crashing [10];
regression testing, which consists in selectively retesting a sys-
tem to verify whether modifications have not caused unwanted
effects [11]; and testing strategy, which consists in the way by

1Usually related to the system’s fault tolerance.

57

which test case design methodologies are combined to provide
an effective testing activity [8].

Different types of software testing research reclaim differ-
ent types of evaluation. Some proposals might be easier to
evaluate, while others might require more work. For instance,
evaluating the effectiveness of a testing criterion might require
the use of real applications, a large pool of test cases, and
random selection of tests not to introduce bias in the test case
generation (for instance, see [12]). In other cases, it might
require only the simulation of an algorithm with different con-
figurations. For instance, in the case of some approaches for
automated test case generation, evaluation may consists only in
running an implementation with different configurations and
comparing the outcomes, which is an experiment easier to
configure than a test criteria study. In any case, evaluation
studies are very important for software testing, because we
need approaches that are at the same time effective but also
feasible. A researcher can only have evidence that a testing
approach is useful or not only when it is adequately measured
with respect to effectiveness and effort factors.

III. STUDY SETUP

A. Research goals

Our main goal is to investigate the dissemination of software
testing evaluations in SBES. We assess the increase in per-
formed evaluations in terms of the percentage of papers with
an evaluation component over the total number of published
papers in a year. We define a paper as containing an evaluation
component when it presents at least a study involving subjects
– humans, programs, or specifications – and not only a single
application example (studies that do not fall into the category
of “application example” as defined in Section II).

A complementary goal of this survey is to characterize the
software testing community that publishes papers in SBES.
We do this by analyzing authors, schools, and topics involved
in the selected publications.

B. Paper selection

The selection of the papers analyzed in this study was based
on the proceedings of the 24 SBES editions, from 1987 to
2010. The papers published from 1987 to 1998, in 2000 and
in 2003 are available only in printed format. Papers published
from 1999 to 2008 (apart from 2000 and 2003) are also
available online2. As of 2009, the SBES proceedings are also
available in the IEEE Digital Library3.

2http://www.lbd.dcc.ufmg.br:8080/bdbcomp/servlet/PesquisaEvento?
evento=sbes – accessed in 02/08/2011.

3http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5336057
and http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5628346 –
accessed in 02/08/2011.

The paper selection process was inspired by a process
for running systematic mapping studies [13]. The first three
authors of this paper performed the paper selection iteratively.
In the first iteration we used an inclusion criterion which
defines that relevant papers must be related to software testing.
Firstly, we performed a preliminary analysis of the papers
published in sessions related to Verification, Validation and
Testing (VV&T) of the main track of each SBES proceedings.
In the next step, we searched for papers related to software
testing in the remaining parts of the proceedings, since some
testing papers were allocated to other sessions (e.g. a paper
on testing aspect-oriented programs can be allocated to the
AOP session). Note that we have not considered SBES satellite
events such as Tool Sessions and collocated workshops, given
that our main goal was to evaluate SBES – i.e. its main
track – as a vehicle to disseminate testing-related research that
performs some kind of evaluation.

The second iteration was carried out by the same authors,
hereafter called the reviewers. The identified papers were
distributed amongst reviewers so that they could read the title,
abstract and introduction aiming at identifying the papers that
contained an evaluation component. In the third iteration the
reviewers performed further analysis of the papers identified in
the previous iteration to exclude “false positives” (e.g. papers
that addressed bug fixing – i.e. maintenance – or other orga-
nizational matters). At this point, for each paper we collected
relevant information into tables. Extracted details included
authors’ names, affiliations, testing approach addressed by the
paper and, when applicable, the type and attributes of the
reported evaluation. The next section presents some details
about the classification schema we applied for the selected
papers.

C. Paper classification

Since there are many elements involved in software testing,
there are also several types of testing-related publications.
Some of them focus on the proposal of a testing criterion,
others focus on automating some aspect of the testing activity.
There are also papers that evaluate testing criteria or varied
testing strategies. Therefore, in a survey like the one reported
herein, the large range of topics covered by software testing
papers requires the adoption of some classification system that
enables us to categorize the publications.

We classified the testing-related papers published in SBES
according to two dimensions: Technique and Type. The first
addresses the main testing-related technique investigated in
a paper. Examples are white-box testing and automated test
case generation. The Type dimension characterizes a paper
according to its nature. While a paper may propose a software
testing approach such as a novel family of criteria, another
may be concerned with evaluating such family of criteria with
respect to its efficacy and effectiveness.

58

The categories related to Technique are the following:

A : Automated test case generation
B : Black-box (Functional) Testing
D : Debugging
F : Fault-based Testing
I : Fault Injection and Fault Tolerance

M : Model-based Testing
R : Regression Testing
S : Testing Strategy
W : White-box (structural) Testing

The categories related to Type are the following:

A : Approach proposal,
E : Evaluation, when the paper evaluates some aspect

of software testing
T : Tool, when the paper describes some testing tool

or testing infrastructure implementation

As we will see in the next section, in some cases a paper
can be classified in two categories of Technique. For example,
a paper that describes an approach for deriving functional test
cases based on the system’s models is classified as B and
M. Nevertheless, as far as possible we tried to assign a single
category to each paper, according to the best related technique.

With respect to Type, we classified the papers according
to their main contribution. For instance, in some cases a
paper may propose a testing approach and at the same time
evaluate it by means of an experiment. However, since the
main contribution of the paper is the approach itself, we would
classify such publication as an approach proposal paper, and
not an evaluation paper.

IV. RESULTS AND ANALYSIS

In this section we present the data gathered in our survey.
We analyzed all available SBES proceedings from 1987 to
2010, and performed the selection process mentioned in the
previous section. Firstly, we selected papers related to software
testing; and secondly, we identified only those that contained
an evaluation component. Among the papers with an evalu-
ation component, we then identified the ones that presented
more rigorous evaluation studies.

A. Selected papers

From the available SBES proceedings, we selected 55 pa-
pers that publish studies related to software testing. Tables III
and IV present all papers and information about each. For each
paper we present the year of publication, the title4, the authors
and their affiliation, the related testing technique and type, the
evaluation type according to Zannier’s classification [7] (or n/a
in the absence of an evaluation component), and the type and

4The titles of the papers written in Portuguese were translated to English.
A list containing the original titles is presented in the Appendix at the end of
this paper.

number of subjects used in the evaluation. Such information
is used to characterize the software testing community that
publishes in the symposium, and to analyze the evolution of
software testing evaluation studies published in SBES along
the years.

B. Community Characterization

In this section we present the results of our survey with
respect to the characterization of the community that has
published software testing papers in the history of SBES. With
respect to scholars, there are 87 authors that appear in the
software testing publications of our survey. Table I presents the
top 16 ranked scholars. We selected only authors with more
than two software testing papers presented at the symposium
editions. To have an idea of how the same authors evaluated
their published studies, in the same table we place the number
of papers that present an evaluation component.

TABLE I
TOP 16 SCHOLARS PUBLISHING SOFTWARE TESTING RESEARCH IN

SBES (1987-2010)

Scholar # pubs. # eval. pubs.

J. C. Maldonado 31 14

M. Jino 12 5

P. C. Masiero 10 3

M. E. Delamaro 7 2

S. R. Vergilio 6 1

S. C. P. F. Fabbri 5 2

O. A. L. Lemos 5 2

A. S. Simão 5 2

A. M. Price 4 0

S. R. S. Sousa 4 2

A. M. R. Vincenzi 4 2

A. Pasquini 3 3

E. Martins 3 2

A. N. Crespo 3 3

M. L. Chaim 3 0

There are 35 institutions involved in the papers of our
survey. Table II presents the top 15 ranked institutions. We
show institutions that appear at least in two software testing
papers published in the symposium. Similar to the data for
the authors, we also place the number of papers published
by researchers with that institution that present an evaluation
component.

With respect to the covered topics and types of software
testing papers published in the history of SBES, Figure 1
presents charts with the data for each axis of our classification
system. Note that the top covered topics were White-box
testing, Fault-based testing, and Test case generation. This
shows a trend of the software testing community that publishes
in SBES and indicates topics that have been less covered

59

TABLE III
TESTING-RELATED PAPERS PUBLISHED IN SBES PROCEEDINGS (1/2).

Year # Title Authors Affiliation Tech Type #Subj.

1987

1 Visualizing the Control Flow of Programs* UFRGS W A n/a - -

2 Controlled Execution of Programs* UFRGS D T n/a - -

3 PROTESTE: Design of a Tool for Program Testing* UFRGS B T n/a - -

1988 4 W A n/a - -

1989 5 W A n/a - -

1990 6 Environment to Support Structural Testing of Programs* UFRGS W T n/a - -

1992

7 Unfeasible Paths in the Testing Activity Automation* W A Example Application programs -

8 W A Example Application - -

1993

9 A Strategy for Generating Test Data* A A Example Application - -

10 Evaluation of the Cost of Alternate Mutation Strategies Purdue University F E programs 4

1994

11 F A Example Application - -

12 Constrained Mutation in C Programs F E programs 5

13 W A n/a - -

1995

14 W A n/a - -

15 E. Martins UNICAMP I A n/a - -

16 UFPB M T n/a - -

1997

17 W E Case Study program 1

18 J. S. Herbert; A. M. A. Price UFRGS A A n/a - -

19 IFSC/USP, ICMC/USP F A n/a - -

20 F A Example Application - -

21 UEPG, ICMC/USP F E 1 / 5

1999

22 FEEC/UNICAMP A, W A program 4

23 F E FSM 10

24 Interface Sufficient Operators: A Case Study* ICMC/USP, UEM F E program 5

2000

25 W A 1

26 ICMC/USP F T 5

27 W A programs 4

* Translated to English (original title in Portuguese)

Eval
Subject

type

A. M. Price; F. Garcia; C. Purper

J. R. V. da Silva; D. L. Segalin; R.
Vieira; P. A. Azevedo;

A. M. Price; C. Purper; F. Garcia

Test Case Selection based on Data Flow through the
Potential-Uses Criteria*

J. C. Maldonado; M. L. Chaim; M.
Jino;

ICMC/USP,
DCA/FEE/UNICAMP

Modeling and Determining Potential DU-Paths through
Data Flow Analysis*

M. L. Chaim; J. C. Maldonado; M.
Jino

DCAI/UNICAMP,
ICMC/USP

A. M. A. Price; A. F. Zorzo

S. R. Vergilio; J. C. Maldonado; M.
Jino

DCAI/UNICAMP,
ICMC/USP

Potential-Uses Criteria: Analyzing the Application of a
Benchmark*

J. C. Maldonado; S. R. Vergilio; M.
L. Chaim; M. Jino

ICMC/USP,
DCAI/UNICAMP

S. R. Vergilio; J. C. Maldonado; M.
Jino

UFPR, ICMC/USP,
FEEC/UNICAMP

A. P. Mathur; Weichen E. Wong
Exploratory Case

Study

Applying Mutant Analysis to the Validation of Petri Net-
based Specifications*

S. C. P. F. Fabbri; J. C. Maldonado;
P. C. Masiero; M. E. Delamaro

UFSCar, ICMC/USP,
IFSC/USP

W. E. Wong; J. C. Maldonado; M. E.
Delamaro; A. P. Mathur

Hughes Network Systems,
ICMC/USP, Purdue

University

Exploratory Case
Study

Unfeasible Paths in Integration Testing: Characterization,
Estimation and Determination*

S. R. Vergilio; J. C. Maldonado; M.
Jino

UFPR, ICMC/USP,
FEEC/UNICAMP

Test Data Generation: A Strategy that Preserves Criteria
Hierarchy*

S. R. Vergilio; J. C. Maldonado; M.
Jino

UFPR, ICMC/USP,
FEEC/UNICAMP

Integrating Fault Injection and Formal Testing in the
Validation of Fault Tolerance*

A G-Net Based Environment for Logical and Timing
Analysis of Software Systems

A. Perkusich; J. C. A. Figueiredo

Potential-Uses Criteria Coverage and Software
Reliability*

A. N. Crespo; A. Pasquini; M. Jino;
J. C. Maldonado

FEEC/UNICAMP,
ICMC/USP

Strategy for Test Data Generation based on Symbolic and
Dynamic Program Analysis*

Integration Testing: Design of Operators for the Interface
Mutation Criterion*

M. E. Delamaro; J. C. Maldonado

Applying the Mutant Analysis Criterion to the Validation
of Statecharts-based Specifications*

S. C. P. F. Fabbri; J. C. Maldonado;
P. C. Masiero

UFSCar, ICMC/USP

Evaluating the Impact of Test Set Minimization on the
Cost and Efficacy of the Mutant Analysis Criterion* S. R. S. Souza; J. C. Maldonado

Exploratory Case
Study

benchmark /
program

Automatic Data Generation and Non-Executabiity
Handling in Structural Software Testing*

P. M. S. Bueno; M. Jino Exploratory Case
Study

A Study of the Cost Evaluation of Applying Mutant
Analysis to the Validation of Finite State Machines*

R. A. Carvalho; S. C. P. F. Fabbri; J.
C. Maldonado

UFSCar, ICMC/USP Exploratory Case
Study

A. M. R. Vincenzi; J. C. Maldonado;
E. F. Barbosa; M. E. Delamaro

Exploratory Case
Study

A Binomial Software Reliability Model Based on
Coverage of Structural Testing Criteria

A. N. Crespo; M. Jino; A. Pasquini;
J. C. Maldonado

USF Campinas, ENEA
Roma, FEEC/UNICAMP,

ICMC/USP

Exploratory Case
Study

program
(a 10-
KLOC

program)

Proteum-RS/PN: A Tool to Support Edition, Simulation
and Validation of Petri Nets based on Mutation

A. S. Simão; J. C. Maldonado; S. C.
P. F. Fabbri

Exploratory Case
Study

specificatio
ns

(Petri nets)

Structural Software Testing: An Approach for Relational
Database Applications*

E. S. Spoto; M. Jino; J. C.
Maldonado

UEM, FEEC/UNICAMP,
ICMC/USP

Exploratory Case
Study

Legend for Tech:
A: Automatic test case generation B: Functional (black-box) testing D: Debugging F: Fault-based testing I: Fault injection/ tolerance
M: Model-based testing R: Regression testing S: Testing Strategy W: Structural (white-box) testing

Legend for Type:
A: Approach proposal E: Evaluation
T: Tool and infrastructure

60

TABLE IV
TESTING-RELATED PAPERS PUBLISHED IN SBES PROCEEDINGS (2/2).

Year # Title Authors Affiliation Tech Type #Subj.

2001

28 ICMC/USP F T n/a - -

29 W A n/a - -

30 Mutant Operators for Testing Concurrent Java Programs F A n/a - -

2002

31 UFPR F A programs 4

32 Tests and Code Generation for Web Systems* UFPE A T Case Study program 1

2003

33 UFCG B A n/a - -

34 ICMC/USP F A n/a - -

2004

35 Unit Testing of Aspect-Oriented Programs* ICMC-USP, UNIVEM W A - -

36 R T humans 1

37 PUC-RS M A n/a - -

2005

38 UFRGS I T n/a - -

39 IC/UNICAMP, INPE A E programs 1

40 An Aspect-based Tool for Functional Testing of Java Programs* ICMC-USP B T n/a - -

2006 41 PUCRS A, M T program 1

2007

42 W A n/a - -

43 IC/UNICAMP, INPE A E programs 7

44 M E Quasi Experiment ?

45 ICMC/USP W A n/a - -

46 S A program 1

2008

47 UFCG M, B A programs 3

48 UFRGS I A - -

49 Obtaining Trustworthy Test Results in Multi-threaded Systems UFCG I A programs 1

50 ICMC-USP W A Example Application - -

51 UTFPR, ICMC-USP S E - -

2009 52 W A Quasi Experiment programs 1

2010

53 F E programs 3

54 Built-in structural testing of web services ICMC-USP W A n/a - -

55 ICMC-USP F E Experiment programs 32

* Translated to English (original title in Portuguese)

Eval
Subject

type

Mudel: A Language and a System for Describing and Generating
Mutants A. S. Simão; J. C. Maldonado

FCCE: A Testing Criteria Family for the Validation of Systems
Specified in Estelle*

S. R. S. Souza; J. C. Maldonado; S.
C. P. F. Fabbri

UEPG, ICMC/USP,
UFSCar

M. E. Delamaro; M. Pezzè; A. M.
R. Vincenzi; J. C. Maldonado

UEM, Università di Milano,
ICMC/USP

Selection and Evaluation of Test Data Sets Based on Genetic
Programming

M. C. F. P. Emer; S. R. Vergilio Exploratory Case
Study

E. Aranha; P. Borba

A Method for Functional Testing for the Verification of
Components*

C. M. Farias; P. D. L. Machado

A Family of Coverage Testing Criteria for Coloured Petri Nets
A. S. Simão; S. R. S. Souza; J. C.

Maldonado

O. A. L. Lemos; A. M. R. Vincenzi;
J. C. Maldonado; P. C. Masiero

Exploratory Case
Study

Reuse in the Software Testing Activity to Reduce VV&T Cost
and Effort in the Development and Re-engineering of Software*

M. I. Cagnin; J. C. Maldonado; A.
Chan; R. Penteado; F. Germano

ICMC-USP, UFSCar Exploratory Case
Study

A Methodology for the Verification of Partial Systems Modeled
with Object-Based Graph Grammar* F. L. Dotti; F. Pasini; O. M. Santos

Distributed Environment of Communication Fault Injection for
Testing of Network Java Applications*

J. Gerchman; G. Jacques-Silva; R. J.
Drebes; T. S. Weber

Automatic test data generation for path testing using a new
stochastic algorithm

B. T. Abreu; E. Martins; F. L. Sousa Exploratory Case
Study

A. D. Rocha; A. S. Simão; J. C.
Maldonado; P. C. Masiero

Automatic Generation of Test Drivers and Stubs for JUnit based
on U2TP Specifications* L. Biasi; K. Becker

Exploratory Case
Study

Static Analysis of Java Bytecode for Domain-Specific Software
Testing

M. E. Delamaro; P. A. Nardi; O. A.
L. Lemos; P. C. Masiero; E. S.

Spoto; J. C. Maldonado; A. M. R.
Vincenzi

UNIVEM, ICMC/USP,
UNISANTOS

Generalized Extremal Optimization: A Competitive Algorithm
for Test Data Generation B. T. Abreu; E. Martins; F. L. Souza

Exploratory Case
Study

Experimental Evaluation of Coverage Criteria for FSM-Based
Testing

A. S. Simão; A. Petrenko; J. C.
Maldonado

ICMC/USP, Centre de
Recherche Informatique de

Montreal (CRIM)

specificatio
ns (FSMs)

Pairwise Structural Testing of Object and Aspect-Oriented Java
Programs

I. G. Franchin; O. A. L. Lemos; P.
C. Masiero

Integration Testing of Aspect-Oriented Programs: A
Characterization Study to Evaluate how to Minimize the Number
of Stubs

R. Ré; P. C. Masiero
UTFPR Campo Mourão

and ICMC/USP
Exploratory Case

Study

Using Similarity Functions to Reduce Test Suites in Strategies
for Model-based Testing*

E. G. Cartaxo; P. D. L. Machado; F.
G. Oliveira Neto; J. F. S. Ouriques

Exploratory Case
Study

Generation of Faultloads for Testing Campaigns with Fault
Injection from UML Testing Models*

J. Gerchman; C. Menegotto; T. S.
Weber

Exploratory Case
Study

A. Dantas; M. Gaudencio; F.
Brasileiro; W. Cirne

Exploratory Case
Study

Integration Testing of Aspect-Oriented Programs: a Structural
Pointcut-Based Approach

O. A. L. Lemos; P. C. Masiero

A Catalog of Stubs to Support the Integration Testing of Aspect-
Oriented Programs *

R. Ré; A. L. S. Domingues; P. C.
Masiero

Exploratory Case
Study

Applying Code Coverage Approach to an Infinite Failure
Software Reliability Mode

A. N. Crespo; A. Pasquini; M. Jino;
J. C. Maldonado

Deep Blue (Italy), ICMC-
USP, FEEC-UNICAMP,

CenPRA-MCT

Characterising Faults in Aspect-Oriented Programs: Towards
Filling the Gap between Theory and Practice

F. C. Ferrari; O. A. L. Lemos; R.
Burrows; A. F. Garcia; J. C.

Maldonado

ICMC-USP, Univ. of
Lancaster, PUC-Rio,

UNIFESP

Exploratory Case
Study

M. M. Eler; M. E. Delamaro; J. C.
Maldonado; P. C. Masiero

Mutation Testing in Procedural and Object-Oriented Paradigms:
An Evaluation of Data Structure Programs*

D. N. Campanha; S. R. S. Sousa; J.
C. Maldonado

Legend for Tech:
A: Automatic test case generation B: Functional (black-box) testing D: Debugging F: Fault-based testing I: Fault injection/ tolerance
M: Model-based testing R: Regression testing S: Testing Strategy W: Structural (white-box) testing

Legend for Type:
A: Approach proposal E: Evaluation
T: Tool and infrastructure

61

White-box Fault-based Test Case Gen. Model-based Fault injection Black-box Strategy Regression Debugging

0

2

4

6

8

10

12

14

16

18

20

papers
eval

(a) Papers by Technique

Approach Evaluation Tool

0

5

10

15

20

25

30

35

papers
eval

(b) Papers by Type

Fig. 1. Charts of the covered topics and types of software testing papers.

TABLE II
TOP 15 INSTITUTIONS PUBLISHING SOFTWARE TESTING RESEARCH IN

SBES (1987-2010)

Institution # pubs. # eval. pubs.

ICMC/USP 35 16

FEEC/UNICAMP 12 5

UFRGS 7 1

UFSCar 5 2

UFPR 4 1

UFCG 3 2

UEM 3 1

UTFPR 2 2

UNIVEM 2 1

IC/UNICAMP 2 2

UEPG 2 1

Purdue University 2 2

PUC-RS 2 1

INPE 2 2

IFSC/USP 2 0

in its lifetime. With respect to type, note that there are
many more papers proposing approaches, and less focused on
evaluations and tools. This also indicates a publication gap of
experimentation papers, which are very important in this field.

C. Characterization and Evolution of Evaluation Studies

With respect to the evaluation studies present in the sur-
veyed papers, note that 33 out of 55 papers performed some
kind of evaluation, and 26 out of these 33 were categorized
as experiments, quasi experiments, case studies or exploratory
case studies. This means that approximately 47% of the whole
set of analyzed papers contained an evaluation component (i.e.
not only an application example).

To show how the numbers of papers with evaluation studies
have evolved over the history of SBES, we analyze the paper
data aggregated per triennium. We did this because we noticed
that an annual analysis would present too much variability.
Table V shows the number of papers that presented evaluation
studies over the total number of published papers for each
triennium. We covered all triennia from 1987 to 2010. Note
that the 1990-1993 triennium skips 1991, because that year had
no software testing publications, as can be noticed in Tables III
and IV. The same applies to the 1994-1997 triennium.

To provide a visual representation of the data, Figure 2
presents a chart of the numbers presented in Table V. We draw
lines between the data points only to provide an idea of the
growth rate between periods. Note that the number of papers
that present evaluation studies have significantly increased
over the triennia. There is a noticeable upward trend, except
for 1999-2001 triennium, which is an interesting outlier (note

62

1987
1988
1989

1990
1992
1993

1994
1995
1997

1999
2000
2001

2002
2003
2004

2005
2006
2007

2008
2009
2010

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
E

va
l.

R
at

e

Triennia

Fig. 2. Chart of the growth rate of papers with evaluation components per
triennium.

TABLE V
EVOLUTION OF THE EVALUATION STUDIES.

Triennium Eval. rate

1987-1989 0.00

1990-1993 0.17

1994-1997 0.24

1999-2001 0.67

2002-2004 0.56

2005-2007 0.61

2008-2010 0.76

the increase from the antecedent triennium and the decrease to
the following triennium). In Section V we provide an in-depth
analysis of these numbers.

Figure 3 presents a chart with the distribution of evaluation
studies among the categories we analyzed. Note that the
mass majority of papers applied exploratory case studies (21
papers), while only 2 papers presented case studies and other
2 quasi experiments, and only 1 paper presented a controlled
experiment. This shows that while SBES has promoted the
increase in application of evaluation studies along the years,
the rigor of these studies were not strong. The next section
discusses related issues in more detail.

Exploratory
Case Study

Case Study Quasi Experiment Experiment

0

5

10

15

20

25

#papers

Fig. 3. Distribution of papers per evaluation type.

V. DISCUSSIONS

An interesting analysis to be conducted is the observation
of the evolution in the rate of software testing papers that
present evaluation components published along the SBES
lifetime. Looking at Table V and Figure 2, we can see that no
evaluations were presented in the first period, but in the second
period, 17% of the papers had an evaluation component.
In the last period, 71% of the papers presented evaluation
components. To obtain the observed growth rate of the total
period, we can use the following equation: OR = FT−LT

FT ,
where OR is the Observed Rate, FT is the First Triennium to
present evaluations (1990-1993), and LT is the Last Triennium
(2008-2010). This analysis shows that there was a 347%
increase in the rate of evaluated papers along all the period.
The average growth observed between triennia (i3) can be
computed by the following equation: i3 = (1 + OR)

1
5 − 1.

Assigning 3.47 to OR, we reach the average growth of 34.92%
in the rate of evaluated papers within subsequent triennia.
These numbers suggest that, if no particular changes occur
in the field, in the next triennium every – or close to every
– software testing paper published in SBES will contain an
evaluation component.

As observed in Section IV, there was an interesting outlier
occurring in the 1999-2001 triennium. We believe this outlier
can be explained by an increase in the awareness of the need
for more serious evaluations in those years, which must have
impacted in the number of evaluation studies. In fact, in 2005
an international survey of controlled experiments in software
engineering [4] showed that 2000 was the year with the highest
number of papers describing experiments, both in absolute and
relative numbers. The subsequent years of 2001 and 2002
presented a decrease in the number of reported controlled
experiments. The similarity perceived here with respect to
software testing research shows a connection between the
SBES community with the international Software Engineering
community.

With respect to the distribution of papers according to the
discussed testing technique, Figure 1(a) reveals that there
is a gap between the number of publications related to the
most frequent topic (white-box testing) and the number of
evaluations: only 6 out of 19 white-box testing papers, i.e.
31%, reported some kind of evaluation. Other topics presented
a better correlation between the number of publications and
evaluations: strategy (100%), regression (100%), and test case
generation (71%), for example.

Regarding the Type-related classification, Figure 1(b) shows
that the novel approaches are hardly ever evaluated in the
same paper: only 9 out of 32 papers, i.e. 28%, reported some
kind of evaluation. This is an evidence that several approaches
have been proposed in SBES but there are not a great concern
with their evaluation. Papers describing some testing tool or

63

related infrastructure implementation have also resulted in a
low correlation between publications and evaluations (36%).
Obviously, all papers aiming at evaluating some aspect of
software testing present an evaluation study, however we
decided to keep the column Evaluation in Figure 1(b) for the
sake of completeness.

VI. CONCLUSIONS

This paper presented a survey with a historical perspective
on the application of evaluation studies in software testing
papers published in the Brazilian Symposium on Software
Engineering (SBES). We have analyzed publications in the
24-year history of the symposium. Our data shows that our
community has significantly improved in this subject, with a
significant increase in the rate of evaluated testing-related pub-
lications. On the other hand, there is still much room to evolve
with respect to the rigor of the performed evaluations. For
instance, from a total of 26 papers that include an evaluation
component, only a single software testing paper published in
the history of the symposium has applied a rigorous controlled
experiment, whereas only two others have presented results of
quasi experiments. These three papers represent only 5% of the
total number of testing-related papers published in the SBES’
main research tracks.

Our survey also provides other interesting insights. For
instance, we found out that publications about test case gen-
eration approaches were one of the most frequent to present
an evaluation component (71%), and only 31% of papers on
white-box testing – the dominant testing topic in SBES – have
evaluated their proposals. This is consistent with the difference
in difficulty in applying experiments for research work on
those topics commented in Section II.

Another interesting result that showed up in our data was
an outlier with respect to papers containing evaluations: the
proceedings of the 1999-2001 triennium presented an un-
common increase in the rate of evaluated papers compared
to the antecedent triennium. This result is consistent with a
2005 international survey of software engineering controlled
experiments, which showed that 2000 was the year with the
highest number of reported experiments in the analyzed period
(1993-2002) [4]. In the future we intend to investigate further
these questions, by looking into the correlation between SBES
and the international software engineering/testing community.

ACKNOWLEDGMENTS

We would like to thank Prof. Francisco Marcelo da Rocha
from UNIFESP, who provided valuable help in the statistical
procedures. We would also like to thank the financial support
received from FAPESP (grants 2010/15540-2, 05/55403-6 and
2008/03252-2), CAPES and CNPq.

REFERENCES

[1] D. G. Feitelson, “Experimental computer science (guest
editor’s introduction),” Commun. ACM, vol. 50, pp. 24–
26, November 2007.

[2] P. A. Freeman, “Back to experimentation,” Commun.
ACM, vol. 51, pp. 21–22, January 2008.

[3] B. Boehm, H. D. Rombach, and M. V. Zelkowitz, Foun-
dations of Empirical Software Engineering: The Legacy
of Victor R. Basili. Secaucus, NJ, USA: Springer-Verlag
New York, Inc., 2005.

[4] D. I. K. Sjoberg, J. E. Hannay, O. Hansen, V. By Kamp-
enes, A. Karahasanovic, N.-K. Liborg, and A. C. Rekdal,
“A survey of controlled experiments in software engi-
neering,” IEEE Trans. Softw. Eng., vol. 31, pp. 733–753,
September 2005.

[5] A. Garcia, “CBSoft 2011 - SBES - Call for papers,” 2011,
available at: http://www.each.usp.br/cbsoft2011/ingles/
sbes/chamada sbes en.html (accessed 16/05/2011).

[6] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation
an appropriate tool for testing experiments?” in Proc. of
the 27th Int’l conference on Software engineering, ser.
ICSE ’05. New York, NY, USA: ACM, 2005, pp. 402–
411.

[7] C. Zannier, G. Melnik, and F. Maurer, “On the success
of empirical studies in the int’l conference on software
engineering,” in Proc. of the 28th Int’l conference on
Software engineering, ser. ICSE ’06. New York, NY,
USA: ACM, 2006, pp. 341–350.

[8] G. J. Myers, C. Sandler, T. Badgett, and T. M. Thomas,
The Art of Software Testing, 2nd ed. John Wiley &
Sons, 2004.

[9] A. P. Mathur, Foundations of Software Testing, 1st ed.
Addison-Wesley Professional, 2008.

[10] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection
techniques and tools,” IEEE Computer, vol. 30, pp. 75–
82, 1997.

[11] IEEE, “IEEE standard glossary of software engineering
terminology,” Institute of Electric and Electronic Engi-
neers, Standard 610.12, 1990.

[12] Z. Lai, S. C. Cheung, and W. K. Chan, “Inter-
context control-flow and data-flow test adequacy criteria
for nesc applications,” in Proc. of the 16th ACM
SIGSOFT Int’l Symposium on Foundations of software
engineering, ser. SIGSOFT ’08/FSE-16. New York,
NY, USA: ACM, 2008, pp. 94–104. [Online]. Available:
http://doi.acm.org/10.1145/1453101.1453115

[13] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson,
“Systematic mapping studies in software engineering,”
in Proc. of the 12th Int’l Conference on Evaluation and
Assessment in Software Engineering (EASE). Bari -
Italy: The British Computer Society, 2008, pp. 1–10.

64

APPENDIX: ORIGINAL PAPER TITLES

Translated Title Original Title

1 Visualizing the Control Flow of Programs

2 Controlled Execution of Programs

3 PROTESTE: Design of a Tool for Program Testing

4

5

6 Environment to Support Structural Testing of Programs

7 Unfeasible Paths in the Testing Activity Automation

8

9 A Strategy for Generating Test Data

11

13

14

15

17

18

19

20

21

22

23

24 Interface Sufficient Operators: A Case Study

27

29

32 Tests and Code Generation for Web Systems

33

35 Unit Testing of Aspect-Oriented Programs

36

37

38

40

41

47

48

51

55

Visualizando o Fluxo de Controle de Programas

Execução Controlada de Programas

PROTESTE: Projeto de uma Ferramenta para Teste de
Programas

Test Case Selection based on Data Flow through the
Potential-Uses Criteria

Seleção de Casos de Teste Baseada em Fluxo de Dados
Através dos Critérios Potenciais-Usos

Modeling and Determining Potential DU-Paths through
Data Flow Analysis

Modelando a Determinação de Potenciais DU-Caminhos
através da Análise de Fluxo de Dados

Ambiente de Apoio ao Teste Estrutural de Programas

Caminhos Não Executáveis na Automação das
Atividades de Teste

Potential-Uses Criteria: Analyzing the Application of a
Benchmark

Critérios Potenciais Usos: Análise de Aplicação de um
Benchmark

Uma Estratégia para Geração de Dados de Teste

Applying Mutant Analysis to the Validation of Petri Net-
based Specifications

Aplicação da Análise de Mutantes na Validação de
Especificações Baseadas em Redes de Petri

Unfeasible Paths in Integration Testing:
Characterization, Estimation and Determination

Caminhos Não Executáveis no Teste de Integração:
Caracterização, Previsão e Determinação

Test Data Generation: A Strategy that Preserves Criteria
Hierarchy

Geração de Dados de Teste: Uma Estratégia que
Preserva a Hierarquia de Critérios

Integrating Fault Injection and Formal Testing in the
Validation of Fault Tolerance

Integrando Injeção de Falhas e Testes Formais na
Validação de Tolerância a Falhas

Potential-Uses Criteria Coverage and Software
Reliability

Cobertura dos Critérios Potenciais-Usos e a
Confiabilidade do Software

Strategy for Test Data Generation based on Symbolic
and Dynamic Program Analysis

Estratégia de Geração de Dados de Teste Baseada na
Análise Simbólica e Dinâmica do Programa

Integration Testing: Design of Operators for the Interface
Mutation Criterion

Teste de Integração: Projeto de Operadores para o
Critério Mutação de Interface

Applying the Mutant Analysis Criterion to the
Validation of Statecharts-based Specifications

Aplicação do Critério Análise de Mutantes na Validação
de Especificações Baseadas em Statecharts

Evaluating the Impact of Test Set Minimization on the
Cost and Efficacy of the Mutant Analysis Criterion

Avaliação do Impacto da Minimização de Conjuntos de
Casos de Teste no Custo e Eficácia do Critério Análise
de Mutantes

Automatic Data Generation and Non-Executabiity
Handling in Structural Software Testing

Geração Automática de Dados e Tratamento de Não
Executabilidade no Teste Estrutural de Software

A Study of the Cost Evaluation of Applying Mutant
Analysis to the Validation of Finite State Machines

Um Estudo sobre a Avaliação do Custo de Aplicação na
Análise de Mutantes na Validação de Máquinas de
Estados Finitos

Operadores Essenciais de Interface: Um Estudo de Caso

Structural Software Testing: An Approach for Relational
Database Applications

Teste Estrutural de Software: Uma Abordagem para
Aplicações de Banco de Dados Relacional

FCCE: A Testing Criteria Family for the Validation of
Systems Specified in Estelle

FCCE: Uma Família de Critérios de Teste para
Validação de Sistemas Especificados em Estelle

Testes e Geração de Código de Sistemas Web

A Method for Functional Testing for the Verification of
Components

Um Método de Teste Funcional para Verificação de
Componentes

Teste de Unidade de Programas Orientados a Aspectos

Reuse in the Software Testing Activity to Reduce VV&T
Cost and Effort in the Development and Re-engineering
of Software

Reuso na atividade de teste para reduzir custo e esforço
de VV&T no desenvolvimento e na reengenharia de
software

A Methodology for the Verification of Partial Systems
Modeled with Object-Based Graph Grammar

Uma metodologia para a verificação de sistemas parciais
modelados na gramática de grafos baseada em objetos

Distributed Environment of Communication Fault
Injection for Testing of Network Java Applications

Ambiente Distribuído de Injeção de Falhas de
Comunicação para Teste de Aplicações Java de Rede

An Aspect-based Tool for Functional Testing of Java
Programs

Uma ferramenta baseada em aspectos para o teste
funcional de programas Java

Automatic Generation of Test Drivers and Stubs for
JUnit based on U2TP Specifications

Geração Automatizada de Drivers e Stubs de Teste para
JUnit a Partir de Especificações U2TP

Using Similarity Functions to Reduce Test Suites in
Strategies for Model-based Testing

Usando Funções de Similaridade para Redução de
Conjuntos de Casos de Teste em Estratégias de Teste
Baseado em Modelos

Generation of Faultloads for Testing Campaigns with
Fault Injection from UML Testing Models

Geração de cargas de falha para campanhas de teste com
injeção de falhas a partir de modelos UML de teste

A Catalog of Stubs to Support the Integration Testing of
Aspect-Oriented Programs

Um catálogo de stubs para apoiar o teste de integração
de programa orientados a aspectos

Mutation Testing in Procedural and Object-Oriented
Paradigms: An Evaluation of Data Structure Programs

Teste de Mutação nos paradigmas Procedimental e OO:
Uma avaliação no contexto de estrutura de dados

65

