
Built-in structural testing of web services
Marcelo Medeiros Eler, Marcio Eduardo Delamaro, Jose Carlos Maldonado, Paulo Cesar Masiero

Instituto de Ciencias Matematicas e de Computacao Universidade de Sao Paulo
P.O. 668 – Sao Carlos – Brasil – 13560-970

Email:{mareler, delamaro, jcmaldon, masiero}@icmc.usp.br

Abstract—Testing Service Oriented Architecture applications
is a challenging task due to the high dynamism, the low coupling
and the low testability of services. Web services, a popular
implementation of services, are usually provided as black box and
using testing techniques based on implementation is limited. This
paper presents an approach to support the use of the structural
testing technique on web service testing. The approach improves
web service testability by developing web services with built-in
structural testing capabilities. Testers can run test cases against
such web services and obtain a coverage analysis on structural
testing criteria. A set of metadata provided with the testable
web service helps testers to evaluate the coverage reached and
the quality of their test cases. An implementation of the approach
is presented using a service called JaBUTiWS that performs
instrumentation and coverage analysis of Java web services. We
also present a usage scenario of the approach.

I. INTRODUCTION

Service Oriented Architecture (SOA) is an architectural
style that uses services as the basic constructs to support the
development of rapid, low-cost, loosely-coupled and easily
integrated applications even in heterogeneous environments
[1]. Web services are an emerging technology to integrate
applications using open standards based on XML that have
become a well adopted implementation of SOA requirements.

Testing SOA applications is a challenging task due to the
complex nature of web services, the high dynamism, the low
coupling and the low testability of services [2]. Testability
is the degree to which a system or service supports the
establishment of test criteria and the performance of tests to
determine whether those criteria have been met. It is also an
important quality indicator since its measurement leads to the
prospect of facilitating and improving a service test process
[3], [4].

Service-oriented software has low testability because it is
more difficult to setup and trace the execution of a test
set when the system elements are on different places across
the network [3]. Moreover, web services have low testability
because they are usually seen as black box since they are
only provided with their interfaces. Designing web services
with high testability is an important task for developers since
it would increase the quality of composite services and reduce
the cost of developing and testing [4], [5].

Canfora and Penta claim that there are five perspectives
for testing a service: developer, provider, integrator, certifier
and user [5]. The testability of web services is different for
each perspective. The developer/provider has full access to
artifacts related to the service implementation and for him/her

the service has high testability, because any available testing
technique can be applied. For the other perspectives, on the
other hand, web services have low testability because they
have only access to interfaces and specifications. In this paper
we also user the perspective tester that represents anyone
who wants to test a web service from an external perspective
(integrator, certifier, user).

Software Components and web services have many similar-
ities. Both of them are self-contained composition units and
are accessed by explicit published interfaces [6]. According to
Weyuker, software components should be tested before using
it even if it had been tested during development time [7].
Brenner et. al. believe that the same care should be taken for
web services and they claim that web services should be tested
during runtime to assure their confiability across the time [8].

The testablity of web services is an important key to allow
clients to perform a suitable testing activity. We found many
approaches in the literature for web service testing. Most
of the research is based on testing web services through
their interfaces’ specification. Some authors have proposed
enriching the WSDL file with semantic markup and other
information to improve the web service testability and to
facilitate the derivation of richer test cases [9]–[11]. Other
authors suggested that developers make available additional
information about services (often called metadata in many
contexts) to help the conduction of tests based on other
information than signatures. These metadata can be models
with the internal structure of the service, test cases, testing
scripts and/or details of the internal implementation [12], [13].

A few approaches have been developed for exploring struc-
tural testing of web services, but they are mainly based on
workflow testing or control and data-flow graphs generated
from the WSDL and/or BPEL specifications [14]–[19]. Most
of these approaches still consider web services as black boxes.

In this context, the purpose of this paper is to present the
BISTWS (Built-in Structural Testing of Web Services) ap-
proach that supports the use of the structural testing technique
on web service testing. The approach improves SOA testability
by providing web services with structural testing facilities
(testable web services). A testable web service has operations
to provide a structural coverage analysis report based on a
test session. Testable web services can also be provided with
metadata to help testers to better understand the web service
under test and to improve their test set.

We believe that developers/providers would be interested in
providing testable web services since testability is a quality

2010 Brazilian Symposium on Software Engineering

978-0-7695-4273-7/10 $26.00 © 2010 IEEE

DOI 10.1109/SBES.2010.15

70



indicator [3]–[5] and it would be a competitive advantage.
We also believe that testers would be interested in using
testable web services since a coverage analysis report allows to
evaluate the quality of their test case by indicating how much
they are exercising the web service under test (in a single or
in a composition context).

BISTWS is generic and in this paper we present an imple-
mentation of the approach using Java web services. We also
show an usage scenario in which a developer/provider created
a web service and used the proposed approach to generate a
testable web services. On the other side, we also show the
activities performed by a tester to execute a test session and
get a coverage analysis report.

This paper is organized as follows. In Section 2, the
BISTWS approach is presented in detail. In Section 3, an
overview of the web service for structural testing JaBUTiWS
that allows a particular instantiation of the BISTWS approach
is presented. In Section 4, an usage scenario of BISTWS
with JaBUTiWS is presented. In Section 5, related work is
discussed. Section 6 presents the conclusions of this work.

II. THE BISTWS APPROACH

BISTWS is a conceptual approach devised to introduce
structural testing into SOA development. The main idea is
to improve web services testability by introducing structural
testing facilities into their code and interface. This kind of web
service is called testable web service. A testable web service
can trace its own execution when a test session is carried out
and can generate a structural coverage analysis based on the
traces generated.

The feasibility of the approach requires the contribution
of many stakeholders. The developer/provider must agree
on instrumenting the code of the web service to introduce
structural testing capabilities. The tester must set the web
service under test to a test session mode, run a set of test cases
and use operations to query for a structural coverage analysis
report. Additionally, the developer/provider should provide a
set of metadata with the testable web service to help testers
to improve their test set.

Instrumenting code to allow structural testing is not an
easy task. The instrumentation adds extra code to trace the
execution of the code under test to generate information about
what parts (data, paths, nodes) were exercised. A set of test
requirements that should be met by test cases should also be
generated during the instrumentation. A structural coverage
analysis use test requirements and trace files to produce a
report indicating how much the test requirements were covered
by the test cases executed during a test session.

Performing structural instrumentation and coverage analyzis
manually requires much effort and it would be error prone. For
that reason BISTWS relies on a web service called TestingWS
that automates the approach. TestingWS is generically defined
as a structural testing service that is able to instrument a web
service and perform coverage analysis based on trace files and
test requirements.

Figure 1 shows an illustration of the BISTWS approach.
The approach defines how developers/providers should use
TestingWS to produce a testable web services and which type
of metadata should be provided to help testers understand
the web service under test and to improve their test set. The
approach also shows how testers can use the structural testing
facilities of testable web services to execute a test session, get
a coverage analysis report and evaluate the results.

Developer

Web Service
1: develops
Web service

TestingWS
2: instruments Web Service

Testable
Web Service

Tester
7: stops test session
8: gets coverage
10: gets metadata

Service Interface

3: publishes
Testable 
Service

with Metadata

Extended
Service Interface

4: starts test session
5: runs test cases6: traces execution

9: gets coverage

Fig. 1. BISTWS approach.

TestingWS and each step of the approach is presented in
details as following. The steps of the approach are split into
Developers’ and Tester’s perspective. The developer perspec-
tive in this paper also represents the provider perspective and
the tester perspective represents the integrator, certifier and
user.

A. TestingWS

TestingWS plays the role of a generic structural testing web
service that is able to produce testable web services and to
perform coverage analysis. TestingWS have two operations:
one to receive a regular web service and return a testable
web service and another to generate a coverage analysis
report based on trace files generated during the execution
of testable web services. The description here is general
and specific details of TestingWS’s operations and activities
(instrumentation and coverage analysis) must be defined for
each implementation.

The operation to generate a testable web service should
perform the following activities:

1) insert instructions into the web service implementation
to give to the instrumented web service the capability to
trace its own execution.

2) analyze the web service implementation and generates a
set of test requirements for the structural criteria adopted
(data-flow and/or control-flow criteria, for example).

3) insert operations to define test sessions (startTrace
and stopTrace) and to return coverage analysis
(getCoverage) into the instrumented web service.
These are important operations since the testing code

71



inserted into the web service during the instrumentation
may bring overhead to its execution and it can be
avoided or mitigated if the testing code is executed only
during a test session.

4) insert operations to handle metadata:
getMetadataTags, that returns a list of tags
with the identification of available metadata (coverage,
test case, test requirements); and getMetadata, that
returns the metadata required.

5) insert an operation to perform relative coverage
(getRelativeCoverage). This operation compares
the coverage score reached by the tester with the one
reached by the developer. It can give to the tester an
idea on how close he/she is to the developer’s coverage.

The operation to generate a coverage analysis report re-
ceives a trace file and an identification of a testable web
service. TestingWS retrieves the test requirements of the
testable web service that were stored during instrumentation
and uses the trace file received to calculate which requirements
were met during the test execution related to the trace received.

B. Developer’s perspective

The following steps presents the activities of the developer
to create a testable web service using the BISTWS approach.

Step 1 - Develops service: The developer creates a web
service using any programming tools and languages. He/She
also develops a set of test cases using any available testing
technique.

Step 2 - Instruments service: The developer wants to
provide a web service with high testability to its clients and
submits the web service developed to be instrumented by
TestingWS. The developer receives a testable web service.

Step 3 - Publishes testable service with metadata: The
developer create a set of metadata and publishes the testable
web service with metadata on a web service container. The
type and structure of the metadata that should be published
with testable web services should be defined by particular
implementations of TestingWS. The developer must publish
the testable version of the web service to allow clients to test
it and get a coverage analysis during runtime.

C. Tester’s perspective

The following steps presents the activities to test a testable
web service and to get a structural coverage analysis to
evaluate the test set executed.

Step 4 - Starts test session: The tester invokes the
startTrace operation to begin a test session. The
startTrace operation takes userID and sessionID as
input parameters. These parameters are used by the testable
web service to identify which trace was generated during
which test session and for which user.

Step 5 - Runs test cases: The tester runs a test set against
the testable web service during a test session.

Step 6 - Traces execution: The testable web service traces
which instructions, branches and data were exercised during
a test session every time an operation is called. The trace

generated is identified by userID and sessionID and is
locally stored by the testable web service.

Step 7 - Stops test session: The tester invokes
the stopTrace operation to stop a test session. The
stopTrace operation also takes userID and sessionID
as input parameters.

Step 8 - Gets coverage: The tester calls the
getCoverage operation using the test session identifiers
(userID and sessionID) as input parameters to obtain a
structural coverage analysis.

Step 9 - Gets coverage: The testable web service executes
the getCoverage operation and delegates to the TestingWS
the task of performing coverage analysis. The testable web
service access the specified trace and send it to TestingWS.
TestingWS performs the coverage analysis and replies to the
testable web service that returns the report to the tester.
The tester does not need to know in fact that TestingWS is
performing the analysis.

The structural coverage analysis is done as follows. Test-
ingWS uses the trace received to determine which test require-
ments generated during instrumentation for each structural
criteria were covered during that particular execution (test
session). Performing this kind of analysis manually requires
much effort and it should be done by a tool. We recommend
that TestingWS also plays the role of the analyzer, since it has
access to the test requirements generated during instrumenta-
tion.

The coverage analysis can be presented in many ways
and can reveal internal details of the web service that are
not exposed through its interface. We suggest four types of
report: coverage analysis by the whole service, by interface
operation, by class and by method (considering an object-
oriented implementation). Developers should decide, during
instrumentation, which types of coverage may be reported on
coverage analysis.

Steps 4 to 9 comprises the main activities of BISTWS
approach, because they are related to a test session. Figure
2 shows a UML Sequence Diagram of a test session in
BISTWS, from the startTrace to the getCoverage
operation. The diagram shows the interaction among the Tester
and the Testable Web Service (TWS) and the TWS and
the JaBUTiWS. The tester does not interact with JaBUTiWS
directly.

Step 10 - Gets metadata: Testers use the coverage analysis
to evaluate the quality of their test cases concerning structural
criteria, but in many cases they do not have enough informa-
tion to decide whether the coverage reached is good or whether
it needs improvement. This happens because web services are
usually provided as black box and testers do not have detailed
information about the implementation. They do not know if
test cases are missing or there are infeasible requirements.
BISTWS mitigate this situation using metadata in many ways:

1) Testers can use the getRelativeCoverage opera-
tion to compare the coverage analysis achieved with the
coverage analysis provided as metadata by the developer.
We assume that the developer has access to the web

72



Fig. 2. A UML Sequence Diagram of a test session in the BISTWS approach

service implementation and can cover all feasible test
requirements. Testers can be satisfied with being close
to the developer’s coverage even if they have not reached
100% coverage for some criterion.

2) Testers can reuse the whole test set provided with
the testable web service as metadata and evaluate the
coverage achieved.

3) Testers can study the developer’s test case to realize what
test cases are missing on their test set. Suppose that a
testable web service is being tested from the perspective
of a composition and the composition handles invalid
entries. In such case the testable web services would
never be invoked with invalid entries. The tester can
realize that test cases for invalid entries are the only test
cases that are missing in comparison with the

D. Governance Rules

The feasibility of the BISTWS approach lays on some
governance rules since they establish rights and duties of each
actor involved [20]. Developers should follow these rules:
• The developer should agree on sending the implementa-
tion (source-code or binary-code) of the web service to
TestingWS. In many cases, the developer could not be
comfortable with providing this artifact, but he/she needs
to trust the confidentiality provided by TestingWS.

• The developer should provide a set of metadata with
the testable web service to help testers on evaluating and
improving the coverage achieved.

• The developer should use the metadata structure provided
by TestingWS to generate the metadata required.

• The developer should not change the testable web service
for a non-testable version. Each update should be submitted
to TestingWS instrumentation. The metadata should be
updated too.
TestingWS should follow these governance rules:

• TestingWS should receive a web service and generate a
testable web service with structural testing capabilities.

• TestingWS should keep internal information of web ser-
vices stored locally to perform coverage analysis using
the trace file received. These information can be the test
requirements, the instrumented code or models that provides
data to perform coverage analysis based on a trace file.

• TestingWS should provide the metadata structure to the
developer.

• TestingWS should provide supporting tools that helps
developers and testers to perform their activities using the
BISTWS approach.

• TestingWS should handle non-functional issues (authen-
tication, availability, concurrency, confidentiality and secu-
rity).

III. JABUTIWS: A TESTINGWS IMPLEMENTATION

The BISTWS approach is conceptual and we present here
a particular implementation of the approach. In previous work
we developed a testing web service called JaBUTiWS that
supports structural testing of Java programs [21]. We extended
JaBUTiWS to comply with the BISTWS and the TestingWS
requirements. In this section we show the details of this
implementation.

A. The previous JaBUTiWS implementation

JaBUTiWS (Available at
www.labes.icmc.usp.br/˜jabutiservice) is a structural testing
web service that was developed based on the tool JaBUTi
(Java Bytecode Understanding and Testing) developed by
Vincenzi et. al. [22] to support structural testing of object-
oriented programs written in Java. JaBUTi implements some
testing coverage criteria that are used in the context of
unit testing: all-nodes, all-edges and all-uses. One of the
advantages of JaBUTi is that it does not require the Java
source code to perform its activities because all static and
dynamic analysis are based on the Java bytecode.

The architecture of the JaBUTiWS is presented in Fig-
ure 3 and it comprises four components: 1) Axis2 engine; 2)
JaBUTiWS Controller; 3) Database (DB); and 4) JaBUTiCore.
Axis2 is a Java-based implementation for both the client and
server sides to send, receive and process SOAP messages.
The Controller component implements the operations pub-
lished on the WSDL interface. It is a controller that receives
messages, accesses the Database and calls JaBUTiCore op-
erations to perform instrumentation and coverage analysis.
The Database stores testing projects’ information, including
test requirements, test cases and trace files. The JaBUTiCore
component wraps the core classes of the JaBUTi tool that
handle instrumentation and coverage analysis.

A comprehensive set of operations was defined to provide
the structural testing service that would be useful for the
service clients. JaBUTiWS is a stateful web service and needs
to follow a sequence of execution. First the tester creates a
project and sends the object program to be instrumented. The
tester then gets the instrumented program and runs it against
test cases. A trace file with execution analysis is generated
and then sent to the JaBUTiWS. JaBUTiWS uses the trace to

73



Fig. 3. Architecture of the JaBUTiWS.

analyze which requirements were covered and which were not
to generate a coverage analysis according to the implemented
criteria.

JaBUTiWS instrumentation is done using BCEL (Byte Code
Engineering Library) and the test requirements generated in
this phase are written in a XML file. JaBUTiWS does not need
to store the instrumented implementation because it performs
the coverage analysis using a trace file and the XML file with
the test requirements generated during instrumentation.

B. The JaBUTiWS implementation to comply with TestingWS
requirements

We have extended JaBUTiWS to support BISTWS and
to comply with the TestingWS requirements. We extended
the JaBUTiWS operations to include an operation to receive
a common web service and transform it into a testable
web service according to BISTWS recommendations. Details
concerning the generation of testable services, the coverage
analysis and the metadata handling are presented as following.

1) Testable web services generation: JaBUTiWS has an
operation to generate testable web services. This operation
takes a deployment package (.war) as input parameter and
produces a deployment package with a testable service. The
instrumentation is done as follows:

1) JaBUTiWS instruments the web service using the origi-
nal instrumentation with BCEL and gives to the testable
web service the capability to write to a trace file details
(instructions, branches and attributes exercised) of its
own execution.

2) JaBUTiWS analyzes the web service implementation
and generates a set of test requirements into a XML
file for these criteria: all-nodes, all-edges and all-uses.

3) JaBUTiWS inserts into the web service the six
operations suggested by the BISTWS approach:
startTrace, stopTrace, getCoverage,
getRelativeCoverage, getMetadataTags
and getMetadata.

The operation to create a testable web service also takes the
access level as an input parameter to determine which details
may be presented in the coverage analysis report.

2) Coverage Analysis: JaBUTiWS performs coverage anal-
ysis using a trace file with execution details and a set of test
requirements generated during instrumentation. The coverage
analysis can be done for the whole service and for its oper-
ations (level 1), for classes (level 2) and for methods (level
3).

3) Metadata handling: We define, in this particular imple-
mentation of BISTWS, two types of metadata that Developers
should produce and publish with the testable web service:
the test set used to test the web service and the coverage
analysis obtained. Figure 4 shows a snippet of a XML test
case metadata. The root element is <testcases>. Each
operation (<operation>) is under the root element with
a attribute name. Each operation defines a set of test cases
(<testcase>). Each test case has identification, a set of
input parameters, an output value and a description (rationale)
of the test case. In this case the description is hidden to safe
space.

1<testset>
2 <operation name=”checkID”>
3 <testcase id=”checkID−1”>
4 <input name=”id” type=”xs:string”>29935661806</input>
5 <expected>true</expected>
6 </testcase>
7 <testcase id=”checkID−2”>
8 <input name=”id” type=”xs:string”>11111111111</input>
9 <expected>false</expected>

10 </testcase>
11 <testcase id=”checkID−3”>
12 <input name=”id” type=”xs:string”>12355454454</input>
13 <expected>false</expected>
14 </testcase>
15 <testcase id=”checkID−4”>
16 <input name=”id” type=”xs:string”>12121</input>
17 <expected>false</expected>
18 </testcase>
19 </operation>
20 </testset>

Fig. 4. Snippet of a test case metadata

Figure 5 shows a snippet of a XML coverage metadata.
The root element is <coverage>. Each type of coverage
(<coveragebyservice>, <coveragebyoperation>,
<coveragebyclass> and <coveragebymethod>) is
declared under the root element. The coverage by service
defines the service name and the coverage for each criterion
under the service element. The coverage by operation defines
the operation name and the coverage for each criterion under
the operation element. The same structure of coverage by
service and coverage by operation is applied to the coverage
by class and coverage by method but it is not shown in Figure
5.

4) Tool Support: We have developed a tool called WSMTS
(Web Service Monitoring and Testing System) to help de-
velopers and testers on their activities. Developers can use
WSMTS to invoke JaBUTiWS to generate a testable web
service and can use WSMTS to create the metadata required
by JaBUTiWS implementation of BISTWS. Testers can use
WSMTS to access testable web services, create and run
test cases, get coverage analysis and get metadata. The full
description of WSMTS is not in the scope of this paper. We
present some illustrations of WSMTS user interface in Section
V and here we highlight its main features and their relation
with the BISTWS steps:

• Testable web service generation (step 2). WSMTS is
used to invoke JaBUTiWS to generate a testable web
service.

74



1<coverage>
2 <coveragebyservice>
3 <service name=”IDChecker”>
4 <All−Nodes req=”58” cov=”20”>34.0</All−Nodes>
5 <All−Edges req=”76” cov=”21”>27.0</All−Edges>
6 <All−Uses req=”195” cov=”40”>20.0</All−Uses>
7 </service>
8 </coveragebyservice>
9

10 <coveragebyoperation>
11 <operation name=”net. id.Checker.isCNPJValid(Ljava/lang/String;)Z”>
12 <All−Nodes req=”37” cov=”0”>0.0</All−Nodes>
13 <All−Edges req=”52” cov=”0”>0.0</All−Edges>
14 <All−Uses req=”139” cov=”0”>0.0</All−Uses>
15 </operation>
16 ( . . . )

17 </coveragebyoperation>
18 ( . . . )

19 </coverage>

Fig. 5. Snippet of a coverage analysis metadata

• Metadata generation (step 3). Developers can use
WSMTS to create a set of test cases and export them
to XML. They can also invoke a testable web service
using the test cases developed and get a coverage analysis
in a XML format. The XML structure used by WSMTS
complies with the JaBUTiWS’s requirements to metadata
structure.

• Testing project creation. Testers can create testing
projects and select testable web services to test. Testers
must provide the name and the endpoint address of the
testable web service. WSMTS access the WSDL file
of the provided testable web service and automatically
extract the published operations that should be tested.

• Test set design. Testers can use the WSMTS interface
to create test cases to the operations of the testable web
service. WSMTS automatically identifies the operations
of the testable web service under test using a WSDL
parser.

• Test session execution (steps 4 to 9). Testers can set the
testable web service to a test session mode and execute
a test set. When the testable web service under test is
in a test session mode, WSMTS automatically invokes
the startTrace before and stopTrace after the test
set execution. WSMTS also invokes the getCoverage
operation of the testable web service after the test session
and presents the results of each test case and the coverage
analysis achieved.

• Metadata visualization (step 10). Testers can use
WSMTS to extract metadata information from the
testable web service. If the metadata is structured as
JaBUTiWS requires, WSMTS shows the metadata in
formated tables. Otherwise, XML document is presented
as it is.

IV. USAGE SCENARIO

The JaBUTiWS implementation of the BISTWS approach
is presented in this section by a simple example. Consider a
scenario in which a developer created a web service called
ShippingWS and uses JaBUTiWS to transform it into a
testable web service before its publication. A tester selected

this service to use into a service composition, implemented
some test cases, got a coverage analysis report and used
the metadata available to evaluate the report achieved. This
scenario is presented in details following the BISTWS steps
and perspectives.

A. Developer’s perspective

ShippingWS is a web service with an operation to query
addresses based on a zip code and an operation to calculate a
shipping price based on a source zip code, a destination zip
code, a weight and a type of shipping service. There are two
types of shipping services: fast (type 1) and basic (type 2). If
the object weights more than 500g, the shipping price of fast
shipping is used, even if basic shipping is selected. The return
value is 0 if weight or service is invalid (weight≤ 0 or 3≤
service≤ 0) and -1 if source or destination zip code is invalid.

Step 1 - Development: The developer implemented Ship-
pingWS using the Axis2 library and the Eclipse platform.
Figure 6 presents the class diagram of the ShippingWS web
service. The interface of ShippingWS has two operations:
calcShippingPrice and getAddress. The Shipping
class implements the ShippingWS interface and uses the
following class: PriceMgr and ZipMgr. The developer used the
test cases forms of WSMTS to created the set of test cases
shown in Table I to test ShippingWS.

Shipping

<<service interface>>
ShippingWS

float calcShippingPrice(srcZip, dstZip, weight, service)
String getAddress(zipCode)

float calcShippingPrice(srcZip, dstZip, weight, service)
String getAddress(zipCode)

ZipMgr

String getState(zipCode)
String getAddress(UF, zipCode)

PriceMgr

float calcSedexPrice(srcZip, dstZip, weight)
float calcBasicPrice(weight)

Fig. 6. Class Diagram of ShippingWS.

Step 2 - Instrumentation: Figure 8 shows the WSMTS
entry form used by the Developer to instrument ShippingWS
using JaBUTiWS. The developer informed what is the end-
point address of JaBUTiWS, the location of the .war file
of ShippingWS implementation, the implementation of the
ShippingWS interface and the destination of the .war file
of the testable version of ShippingWS. The developer also
selected the level of details that may be reported on coverage
analysis. In this case, the developer set the access level 3 that
allows testers to get coverage analysis by service, by interface
operations, by classes and by methods. WSMTS used these
information to invoke JaBUTiWS and get a testable version
of ShippingWS.

Figure 7 shows the ShippingWS interface after the instru-
mentation. According to the recommendations of BISTWS,

75



TABLE I
DEVELOPER’S TEST CASES TO TEST SHIPPINGWS

TC-ID Input Output Rationale
CalcShippingPrice srcZip, dstZip, weight, service Expected value Description

01 13566580, 19500000, 0.3, 1 11.9 Valid parameters using service 1
02 13566580, 13566580, 0.4, 2 6.85 Valid parameters using service 2 and lighter than 500g
03 13566580, 13566580, 0.7, 2 11.2 Valid parameters using service 2 and heavier than 500g
04 13566, 13566580, 0.7, 2 ZipFault Invalid source zip using service 2.
05 13566580, 130, 0.7, 2 ZipFault Invalid destination zip using service 2.
06 13566580, 13566580, -0.5, 2 InputFault Invalid weight using service 2
07 13566580, 13566580, 0.5, 3 InputFault Invalid service

GetAddress zipCode Expected value Description
01 13566580 Miguel Alves Margarido Street Valid parameters
02 1340, Invalid zip code Invalid parameters

ShippingWS have gotten operations to support structural test-
ing and handle metadata.

<<service interface>>
ShippingWS

float calcShippingPrice(srcZip, dstZip, weight, service)
String getAddress(zipCode)
String[] getMetadataTags()
XML getMetadata(String tag)
void startTrace(userID, sessionID)
void stopTrace(userID, sessionID)
XML getCoverage(userID, sessionID, reportType)
XML getRelativeCoverage(userID, sessionID, reportType)

Fig. 7. ShippingWS interface after instrumentation.

Fig. 8. Testable Web Service Generation

Step 3 - Publication: The developer ran the test set created
using WSMTS and get a coverage analysis. The developer
used WSMTS to export the test set and the coverage analysis
achieved to a XML format that complies with the specifi-
cations of the metadata required by JaBUTiWS. Thus, the
developer published the testable version of ShippingWS and
its metadata on a Tomcat container.

B. Tester’s perspective

An integrator wanted to use a web service with the same
specifications of ShippingWS. ShippingWS was found into a
registry of web services and a tester was required to guarantee
that ShippingWS is working perfectly. The following steps
show the activities performed by a tester to test ShippingWS.

Steps 4 to 9 - Test session: The tester access the interface
specification of ShippingWS and used the test cases forms of
WSMTS to create a set of test cases. Figure 9 shows the test
cases created to test ShippingWS. Notice that there are test
cases for both operations of ShippingWS. The TC-ID column
represents the identifier of the test case. The input values of the
test case are from the first column after TC-ID to the column
right before Expected value. The Expected Value is the oracle
of the test case.

Fig. 9. Test cases created to test ShippingWS

After creating the test cases, the tester used WSMTS to set
ShippingWS to a test session mode. The tester used WSMTS
to run the test cases presented in Figure 9 and the following
activities were executed at this point:

1) WSMTS called the startTrace operation of Ship-
pingWS.

2) WSMTS ran each test case of the selected test case.
3) WSMTS called the stopTrace operation of Ship-

pingWS.
4) WSMTS called the getCoverage operation of Ship-

pingWS and presented a coverage analysis report. Table
II shows the coverage analysis achieved with the tester’s
test cases. Each line at the coverage report shows the
number of test requirements covered over the number of
test requirements. Notice that the tester could not reach
100% of coverage in any criterion for any entity (service,

76



operation, class, method). We do not show the screen of
the WSMTS here to save space.

5) WSMTS presented a report with the status of each test
case executed (passed or failed).

TABLE II
STRUCTURAL COVERAGE ANALYSIS

Service All-nodes All-edges All-uses
ShippingWS 25/42(60%) 9/51(57%) 58/90(64%)
Operation All-nodes All-edges All-uses

calcShippingPrice 8/13(62%) 8/18(44%) 22/34(65%)
getAddress 2/3(67%) 1/2(50%) 7/9(78%)

Class All-nodes All-edges All-uses
PriceMgr 7/13(54%) 10/16(63%) 15/25(60%)
Shipping 10/16(63%) 9/20(45%) 29/43(67%)
ZipMgr 8/13(62%) 10/15(67%) 14/22(64%)
Method All-nodes All-edges All-uses

PriceMgr.calcBasicPrice 4/7(57%) 6/9(67%) 11/16(69%)
PriceMgr.calcSedexPrice 3/6(50%) 4/7(57%) 4/9(44%)

Shipping.calcShippingPrice 8/13(62%) 8/18(44%) 22/34(65%)
Shipping.getAddress 2/3(67%) 1/2(50%) 7/9(78%)
ZipMgr.getAddress 4/7(57%) 5/8(53%) 8/13(62%)

ZipMgr.getState 4/6(67%) 5/7(71%) 6/9(67%)

Step 10 - Metadata usage: The tester was not confident that
the coverage reached was enough. The tester used WSMTS to
get the metadata provided by ShippingWS and performed the
following activities:

1) Coverage Analysis comparison: The tester saw the cov-
erage analysis reached by the developer’s test cases
execution and realized that there were not infeasible re-
quirements. The tester realized that it would be possible
to reach the maximum coverage improving the test set
used.

2) Test cases study: The tester studied the developer’s test
cases and realized that there were no test cases for
invalid input parameters in his/her original test set. The
tester thus improved the test set with test cases for
invalid entries and this time he/she could achieve 100%
of coverage for all criterion.

Figure 10 shows an illustration of the last configuration
of the WSMTS project to test ShippingWS. TestShippintWS
is associated to the ShippingWS testable web service. The
test set (test-ShippingWS-1) was created to test ShippingWS.
ShippingWS also has two metadata: coverage.xml and test-
cases.xml. The execution of the test set produced a test set
result (test-ShippingWS-1-exec-1.xml) and a coverage analysis
report (test-ShippingWS-1-execCov-1.xml). The right side of
the picture shows the coverage analysis achieved after the last
test session.

C. Discussion

The example presented is simple but we could learn many
things during its execution. We could realize that the adoption
of BISTWS using JaBUTiWS have little impact on developers
and testers tasks. Developers can easily transform web services
into a testable version since all transformation and coverage
analysis are automatically performed by JaBUTiWS. It is even

easier when the developer uses a supporting tool like WSMTS.
Their main effort is to produce the set of metadata in the
required XML format, but this task is straightforward when
the developer has already created a set of test cases and uses
supporting tools.

The example also shows that is easy to get structural testing
information from a testable web service. There is no difference
between using one or another version of the web service
considering the regular operations. The difference is that the
tester needs to invoke the operation startTrace before and
the operation startTrace after a test session if he/she wants
to get a coverage analysis invoking getCoverage operation.
In the example presented, these operations were automatically
invoked by WSMTS.

We could also realized that BISTWS has some limitations.
BISTWS is highly dependent of TestingWS and the testing
code of the instrumented web services brings overhead to the
architecture. The dependency of TestingWS could be solved by
giving to the testable web service the capability of performing
coverage analysis instead of calling TestingWS to perform this
task. It depends on the implementation of TestingWS and the
instrumentation phase, but we believe that, in general, that
solution would bring a greater overhead to the testable web
service code.

The overhead issue also depends on the implementation of
TestingWS. In the JaBUTiWS implementation, for example,
the testing code is only activated to generate a trace file
when a testable web service is set to a test session mode
(startTrace). However, the testing code is also executed
when a test session is not being carried out. The difference is
that no trace file is generated outside a test session. Moreover,
other clients may also be affected by the overhead when they
were using a testable web service that was set to a test session
mode by some client.

We have done a performance analysis to evaluate how much
is the overhead inserted by BISTWS in a SOA architecture
using testable web services generated by JaBUTiWS. We
created a set of test cases and executed them fifity times against
a web service and its testable version. Considering the testable
version, we executed the test set inside and outside a test
session. We measured the average time to execute the whole
test set in the three situations mentioned above and summarize
the results on Table III. Notice that the overhead of the testable
web service outside a test session is 2.65% and inside a test
session is 5.26%.

The response time presented in Table III is the average of
fifty executions and in general the response time of a testable
web service was greater than the response time of a regular
web service. However, there were specific executions in that
the response time of the testable version execution was smaller
than the response time of the regular version. This happens
because in some executions the overhead due to the network
was greater than the overhead brought by the testing code.
Thus we consider that the testing code overhead is worthless
for non critical SOA applications.

Another issue we found is related to the metadata. There can

77



Fig. 10. ToolSupport

TABLE III
OVERHEAD ANALYSIS

Web service Version Average time Overhead
Non-testable 2070 0%

Testable 2125 2.65%
Testable (in test session mode) 2179 5.26%

be testable web services without any metadata or the metadata
suggested may not be enough to help testers improve their test
set. We are performing a study regarding this issue to come
out with a better solution soon.

Despite these drawbacks, we believe that the proposed
approach does not characterize a very hard architecture and the
overhead is minimum. The high availability of an implementa-
tion of TestingWS is not very difficult to accomplish and, if it
becomes unavailable sometime, the only operation of a testable
web service that would not work is the getCoverage
operation. All other operations does not depend on TestingWS.
Even if at this moment testers have few information to improve
their test set, at least they have a perspective on how they are
exercising the web service under test.

V. RELATED WORK

A few proposals for structural testing of web services
have been found in the literature, but we only discuss those
ones that are more related to our work. Bartolini et. al [15]
proposed a web service called TCov. The developer should
manually instrument the service or composition of services to
be tested and insert calls to TCov to record information of
execution. Every time the instrumented service runs, details
of the execution will be recorded in TCov. Thus, the client
using the service can run test cases and query TCov to obtain
recorded data. For any coverage analysis, the client should use

the data collected from TCov and do it manually or either use
an existing tool or develop one to do this. In our approach, the
instrumentation is done automatically as well as the coverage
analysis and BISTWS also supports testers with metadata.

Endo et. al. [17] proposed applying the model PCFG (Paral-
lel Control Flow Graph) for testing Web Services compositions
represented in BPEL. A PCFG is a model to capture the con-
trol flow, data flow and communication in parallel programs
based on message exchange. A PCFG is composed of several
processes that have their own control flow (CFG - Control
Flow Graph). The ValiBPEL tool automates the approach and
use structural testing criteria such as all-nodes, all-edges and
all-uses.

Karam et al. [23] introduced a formal model to map the
structure of compositions of web services under testing. Each
service of the composition is called a node and transactions
between web services are the edges, so graph techniques are
used to derive test cases to cover structural criteria, as all-
nodes and all-edges, for example.

The work of Karam et. al. [23] and Endo et. al. [17] is
similar to our approach as both use structural criteria for
testing web services. The focus of their work, however, is only
on supporting the developer on testing a BPEL process before
publishing it, because it is necessary to have access to the
code to derive the model proposed. Moreover, the emphasis is
on testing the composition, and the web services used in the
composition are seen as black-box.

VI. CONCLUDING REMARKS

This paper presented the BISTWS approach to apply struc-
tural testing in the context of SOA testing. The main idea is
to support developers on creating testable web services with
structural testing facilities to their clients. Testers can set the

78



testable web service to a test session mode, run test cases and
get a coverage analysis report on structural testing criteria.
Testers can also use the metadata of the testable service to
evaluate and improve the coverage achieved.

The approach proposed is generic and introduces the idea
of improving web service testability through structural test-
ing capabilities. The implementation of the approach defines
which programming languages will be supported on gener-
ating testable web services. The particular implementation
also affects how the instrumentation is done, which structural
criteria are supported and which operations are inserted into
the testable web service.

We have also shown an implementation of the approach
using a web service for structural testing of Java web services
called JaBUTiWS. We also presented a short usage example.
JaBUTiWS only generates web services in Java but they still
comply with web services standards. Applying the BISTWS
approach to other languages requires the implementation of a
tool to instrument the web service and to insert the operations
to easy the structural testing from an external context.

JaBUTiWS does not handle non-functional issues and does
not support integration testing currently. Compositions written
in Java can be instrumented by JaBUTiWS, but the web
services used in the composition would not be instrumented.
Even if the web services used in the composition are testable
web services, the structural criteria and the coverage analysis
implemented by JaBUTiWS would not cover the integration
among the testable web services.

As future work we intend to design other implementations
of TestingWS. We plan to convert the ValiBPEL tool [17]
into a web service and integrate it with JaBUTiWS. This
combination would allow the generation of testable workflow
BPEL. It could also be explored the integration between the
workflow and the testable web services used as clientes. We
will also perform further evaluation of the BISTWS approach
to formally evaluate the advantages of using a testable web
service instead of using a regular web service. Moreover, we
plan to investigate how structural testing facilities could help
to monitor and to certificate web services.

There are also some improvements we want to do in the
JaBUTiWS implementation: use test requirements as metadata
and allow testers to relate which test requirements were cov-
ered by which test case and which test requirements still need
to be covered; implement non-functional requirements, such
as concurrency control, authentication and security issues;
perform a detailed study on how and which metadata would
be useful to help testers improve their test set after achieving
a coverage analysis report.

VII. ACKNOWLEDGEMENTS

The authors would like to thank the Brazilian funding
agencies: FAPESP (process 2008/03252-2), CAPES and CNPq
for their financial support.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J. Krämer,
“Service-oriented computing: A research roadmap,” in Service Oriented
Computing, 2005.

[2] M. H. Mustafa Bozkurt and Y. Hassoun, “Testing web services: A
survey,” Department of Computer Science, King’s College London,
Tech. Rep. TR-10-01, January 2010.

[3] L. O’Brien, P. Merson, and L. Bass, “Quality attributes for service-
oriented architectures,” in Proc. of the Int. Workshop on Systems
Development in SOA Environments, 2007, p. 3.

[4] W. T. Tsai, J. Gao, X. Wei, and Y. Chen, “Testability of software in
service-oriented architecture,” in Proc. of the 30th Annual Int. Computer
Software and Applications Conf., 2006, pp. 163–170.

[5] G. Canfora and M. Penta, “Service-oriented architectures testing: A
survey,” pp. 78–105, 2009.

[6] H.-G. Gross, Component-Based Software Testing with UML. Springer,
2005.

[7] E. J. Weyuker, “Testing component-based software: A cautionary tale,”
IEEE Softw., vol. 15, no. 5, pp. 54–59, 1998.

[8] D. Brenner, C. Atkinson, O. Hummel, and D. Stoll, “Strategies for the
run-time testing of third party web services,” in SOCA ’07: Proc. of the
IEEE Int. Conference on Service-Oriented Computing and Applications.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 114–121.

[9] X. Bai, W. Dong, W.-T. Tsai, and Y. Chen, “Wsdl-based automatic test
case generation for web services testing,” in Proc. of the IEEE Int.
Workshop on Service-Oriented System Engineering, 2005, pp. 215–220.

[10] C. Keum, S. Kang, I.-Y. Ko, J. Baik, and Y.-I. Choi, “Generating test
cases for web services using extended finite state machine,” in Proc.
of the 18th Int. Conf. on Testing Communicating Systems, 2006, pp.
103–117.

[11] W. T. Tsai, R. Paul, Y. Wang, C. Fan, and D. Wang, “Extending wsdl to
facilitate web services testing,” in Proc. of the 7th IEEE Int. Symposium
on High Assurance Systems Engineering, 2002, p. 171.

[12] X. Bai, Y. Wang, G. Dai, W.-T. Tsai, and Y. Chen, “A framework for
contract-based collaborative verification and validation of web services.”
in Proc. of the 10th Int. Symposium on Component-Based Software
Engineering.

[13] R. Heckel and L. Mariani, “Automatic conformance testing of web
services,” in Proc. of the 9th Int. Conf. on Fundamental Approaches
to Software Engineering, 2005, pp. 34–48.

[14] C. Bartolini, A. Bertolino, E. Marchetti, and I. Parissis, “Data flow-based
validation of web services compositions: Perspectives and examples,” pp.
298–325, 2008.

[15] C. Bartolini, A. Bertolino, S. Elbaum, and E. Marchetti, “Whitening
soa testing,” in Proc. of the 7th Joint Meeting of the European Software
Engineering Conf., 2009, pp. 161–170.

[16] W.-L. Dong, H. Yu, and Y.-B. Zhang, “Testing bpel-based web service
composition using high-level petri nets,” in Proc. of the 10th IEEE Int.
Enterprise Distributed Object Computing Conf., 2006, pp. 441–444.

[17] A. T. Endo, A. S. Simão, S. R. S. Souza, and P. S. L. Souza, “Web
services composition testing: a strategy based on structural testing of
parallel programs,” in Proc. of the Testing: Academic and Industrial
Conf. - Pratice and Research Techniques, 2008.

[18] L. Li, W. Chou, and W. Guo, “Control flow analysis and coverage
driven testing for web services,” in Proc. of the IEEE Int. Conf. on
Web Services, 2008, pp. 473–480.

[19] L. Mei, W. Chan, and T. Tse, “Data flow testing of service-oriented
workflow applications,” in Proc. of the 30th Int. Conf. on Software
Engineering, 2008, pp. 371–380.

[20] A. Bertolino and A. Polini, “Soa test governance: Enabling service
integration testing across organization and technology borders,” in Proc.
of the IEEE Int. Conf. on Software Testing, Verification and Validation,
2009, pp. 277–286.

[21] M. M. Eler, A. T. Endo, P. C. Masiero, M. E. Delamaro, J. C. Maldonado,
A. M. R. Vincenzi, M. L. Chaim, and D. M. Beder, “Jabutiservice: A
web service for structural testing of java programs,” in Proc. of the 33rd
Annual IEEE Software Engineering Workshop, 2009.

[22] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E. Wong,
“Establishing structural testing criteria for java bytecode,” Software
Practice & Experience, vol. 36, no. 14, pp. 1513–1541, 2006.

[23] M. Karam, H. Safa, and H. Artail, “An abstract workflow-based frame-
work for testing composed web services.” in Proc. of the 5th Int. Conf.
on Computer Systems and Applications.

79


