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3Instituto de Ciências Matemáticas e de Computação - Universidade de São Paulo

São Carlos - SP

marceloeler@usp.br, andreendo@utfpr.edu.br, durelli@icmc.usp.br

Abstract. Symbolic execution has been used in software testing as a effective

technique to automatically generate test data. Most of approaches are based

only on control-flow criteria and generate input data only for a whole pro-

gram or function. However, testers may want to generate test data for covering

data-flow criteria and also for satisfying specific test requirements. This paper

presents an approach for generating test data to cover only test requirements

selected by users, considering both control- and data-flow criteria. A proto-

type was implemented to support test data generation for Java programs and to

perform a preliminary evaluation of the approach. The results, although in a

limited context, are encouraging and motivate future experiments.

Resumo. A execução simbólica tem sido utilizada no teste de software como

uma técnica efetiva para gerar dados de teste automaticamente. A maioria

das abordagens considera apenas critérios de fluxo de controle e o teste com-

pleto da função ou do programa. Entretanto, testadores podem querer usar

critérios de fluxo de dados e cobrir apenas requisitos especı́ficos. Este artigo

apresenta uma abordagem para gerar dados de teste para cobrir requisitos de

teste definidos pelo usuário considerando critérios de fluxo de dados e de cont-

role. Um protótipo foi implementado para gerar dados de teste para programas

Java e realizar uma avaliação preliminar da abordagem. Os resultados, embora

em um contexto limitado, são encorajadores e motivam mais experimentos.

1. Introduction

Software testing is one of the key activities for software quality assurance. Its main goal

is to execute a program with the goal of uncovering faults [Myers et al. 2004]. Selecting

input values to create good test cases that are likely to reveal faults is a fundamental

challenge in this field. However, testing a software with all possible input values is, in

general, impossible [Vergilio et al. 2006].

Different testing techniques have been proposed to select finite but suitable sets

of input values (test data) for test cases. Each technique contains a set of testing criteria

which are adopted to establish test requirements that should be met by test cases. The most
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known testing techniques are classified as functional (black-box) or structural (white-

box). Structural techniques focus on testing the inner structure of a program. Thus, testers

derive test requirements from the source code of the program under test. These require-

ments define a testing criterion that can be used to determine whether the program under

test should be more tested or not [Beizer 1990, Myers et al. 2004]. Usually, structural

testing criteria are classified as control- and data-flow criteria [Rapps and Weyuker 1985,

Zhu et al. 1997, Myers et al. 2004].

Generating test cases to satisfy test requirements established by structural cri-

teria is a costly and error-prone activity. Symbolic execution and constraint solving

have been used for more than three decades as an effective technique for automatic

generation of test data that achieves high coverage of control-flow criteria require-

ments [Ramamoorthy et al. 1976, Cadar and Sen 2013]. The key idea behind symbolic

execution is to represent the values of variables as functions of symbolic input val-

ues [King 1976, Cadar and Sen 2013]. Considering the control-flow criteria, for example,

an execution path can be represented as a sequence of constraints that should be satisfied.

Thus, a constraint solver is used to generate concrete input values that satisfy the con-

straint sequence for that path. If the program is executed on these concrete input values,

it will take the same path and terminate in the same way.

Programs with a large number of execution paths can lead to many constraint

sequences. A sizable amount of constraint sequences can negatively impact the con-

straint solving process, which is one of the main bottlenecks in symbolic execu-

tion [Cadar and Sen 2013]. Most heuristics focus on achieving high statement and

branch coverage guiding the path exploration toward the path closest from an uncovered

path [Cadar and Sen 2013]. Techniques to prune away irrelevant constraint sequences

and cache constraint solving results have also been employed. Although research in sym-

bolic execution has come a long way over the last three decades, there is much room for

improvement in this area [Cadar and Sen 2013, Galler and Aichernig 2013].

A limitation of current approaches is that they only generate test data for a whole

program or function. Current approaches do not generate test data to cover only a single

slice of the code. We argue that generating test data to exercise only specific parts of the

code would be helpful in many contexts, such as: (i) testers who have a test suite and want

to generate test data only to meet uncovered test requirements for a given criterion; (ii)

testers who want to generate test data only to exercise the integration between an appli-

cation and specific parts of the code that interface with external components, services or

systems; (iii) the generation of test data for regression testing only to exercise statements,

branches, and data usage affected by a change; and (iv) approaches that generate test

cases considering each user requirement (or group of requirements). Another limitation

of current approaches is that they generate test data based only on control-flow criteria.

As programs become larger and more complex, covering all test requirements of

these programs becomes unpractical, and hence selective testing becomes increasingly

relevant. This paper proposes an approach for generating test data to cover only test

requirements selected by users, considering both control and data-flow criteria. Given

that this scenario is very likely in practice, the contribution of this paper is twofold. First,

the tester will benefit from automatic test generation to cover complex test requirements

and yet reduce the overhead of path explosion, since the test data generated are meant to
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cover only a subset of test requirements. In addition, another contribution is to introduce

data-flow in a context where only control-flow criteria have been investigated.

This paper is organized as follows. Section 2 describes the basic concepts of struc-

tural testing and symbolic execution and discusses related work. Section 3 introduces

our approach to generate test data for user-defined test requirements. We emphasize test

requirements from the data-flow criterion all-uses. Section 3.1 details our prototype im-

plementation. Section 4 provides an initial evaluation we conducted. Section 6 suggests

future work and makes concluding remarks.

2. Background

The basic concepts behind structural testing and symbolic execution are presented by

means of an illustrative example. Listing 1 shows a code snippet of a method that cal-

culates the prime factorization of a number. This method receives an integer N as input

and prints all prime factors of N. It starts trying to divide N by the first prime number (2)

until the remaining of the division is different from 0. Then, it calculates the next prime

number and restarts the divisions until the prime calculated is greater than the half of N.

For instance, given N=20, the output produced is 2 2 5.

2.1. Structural testing

Testing the factorizationmethod shown in Listing 1 according to the structural test-

ing technique requires creating test cases that satisfy both control- and data-flow criteria.

All-nodes, all-edges and all-paths are well known control-flow criteria because they con-

sider the execution control of the program to generate test requirements [Zhu et al. 1997].

It is common to adopt an abstraction called control-flow graph (CFG) to represent the

inner structure of the program under test and to support the analysis of structural testing

criteria. CFGs are directed graphs in which each node represents a block of instructions

without flow deviation (i.e., a basic block). Directed edges represent transitions in the

control flow.

The all-nodes criterion requires that every node of the CFG be executed at least

once, while the all-edges criterion requires the execution of every edge at least once. The

all-paths criterion requires that every path of the CFG be executed once. If the CFG

contains loops, it is usually impossible to execute all paths because in many cases this

leads to an infinite number of paths. In such case, testers can put a limit to the number of

loop iterations to be executed.

The all-uses criterion is a well-known data-flow criterion that takes information

about the program data-flow to generate test requirements [Rapps and Weyuker 1982]. In

this context, Rapps and Weyuker [Rapps and Weyuker 1985] proposed an extension to

the CFG called def-use graph (DUG) to add information related to variable usage. The

usage of a variable has been classified as computation use (c–use), when the variable is

used in a computation, and as predicate use (p–use), when the variable is used in a con-

ditional statement. In the DUG, c–uses are associated to nodes and p–uses are associated

to edges. Figure 1 shows the DUG representation of the factorization method. The

comments within Listing 1 indicate the DUG node number for each line of the method.

The DUG signs a variable definition when its name is written inside def={} next to a

node. Variable uses are identified when their names are inside c-use={} and p-use={}
next to a node or an edge, respectively.
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Listing 1. A simple factorization method.
 !

1 p u b l i c vo id f a c t o r i z a t i o n ( i n t N) {
2 i f (N > 0) { / / 1

3 i n t pr ime = 2 ; / / 2

4 i n t number = N; / / 2

5 whi le ( pr ime <= N / 2 ) { / / 3

6 i f ( number % pr ime == 0) { / / 4

7 System . o u t . p r i n t l n ( pr ime ) ; / / 5

8 number = number / pr ime ; / / 5

9 }
10 e l s e

11 {
12 i n t n e x t P r i m e = pr ime ; / / 6

13 i n t found = 0 ; / / 6

14 whi le ( found == 0) { / / 7

15 n e x t P r i m e = n e x t P r i m e + 1 ; / / 8

16 found = 1 ; / / 8

17 i n t d = 2 ; / / 8

18 whi le ( d <= n e x t P r i m e / 2 ) { / / 9

19 i f ( n e x t P r i m e % d == 0) / / 10

20 found = 0 ; / / 11

21 d ++; / / 12

22 }
23 }
24 pr ime = n e x t P r i m e ; / / 13

25 }
26 }
27 i f ( number > 1) / / 14

28 System . o u t . p r i n t l n ( number ) ; / / 15

29 }
30 } / / 16 − r e t u r n
"# $

Based on this data flow model, a family of testing criteria has been

proposed, such as all-c-uses, all-p-uses, all-definitions, all-uses, and all-du-paths

[Rapps and Weyuker 1982, Rapps and Weyuker 1985]. The all-uses criterion is by far the

most known of them; it requires that every definition of a data object (variable) and its as-

sociated uses (c-use or p-use) be executed at least once (i.e., the test suite should execute

all definition–use pairs). The all-uses criterion takes into account only the def-use pairs

that have some path from the definition to the use in which the considered variable is not

redefined. This special path is called def-clear path.

Table 1 presents the test requirements generated for structural testing criteria based

on the DUG generated. Regarding control-flow criteria, 16 nodes, 22 edges and 13 paths

are presented. Notice that there are only 13 paths because only one loop iteration was

considered. If two iterations of each loop were considered, there would be more distinct

paths. As for the all-uses criterion, there are 47 test requirements, but only the def-use

pairs for the variable number are presented.

2.2. Symbolic Execution

The general idea behind symbolic execution is to represent the values of variables over the

symbolic input values of a program or function [King 1976, Cadar and Sen 2013]. Con-
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sidering the control-flow criterion, each execution path of the program can be represented

as a sequence of constraints expressed as a function of the symbolic input values. Con-

sider, for example, the following execution path of factorization: 1 2 3 4 6 7 8 9

7 13 3 14 15 16. To move from node 1 to node 2, N must satisfy the constraint N > 0.

To move from node 3 to 4, N must satisfy the constraint (prime <= N/2). Symbolic

execution replaces prime by its initial value (Listing 1, Line 3), thus the constraint may

be expressed as (2 <= N/2). To move from node 4 to node 6, number and prime

must satisfy the constraint (number%prime != 0). Symbolic execution expresses

this constraint as (N%2 != 0) after computing everything over input values.
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Figure 1. CFG of the factorization method

After symbolic execution, the aforementioned path is represented by this con-

straint sequence: {N > 0} ∧ {2 <= N/2} ∧ {N%2 != 0} ∧ {0 == 0} ∧ {2 >

(2+1)/2} ∧ {1 != 0} ∧ {2+1 > N/2} ∧ {N > 1}. A constraint solver thus pro-

duces a solution that satisfies all constraints of the sequence. In this case, 5 is a value

of N that satisfies all these constraint. If the number 5 is passed in as an input parameter

to factorization, it will follow the same execution path presented above and it will

cover the nodes, edges, and uses related to this path (see Table 1).

Programs under test may also have infeasible paths, i.e., they might lead to un-

solvable constraints. Take the path 1 2 3 4 6 7 13 3 14 16 for instance. In node 6, found

is set to 0 but it must satisfy the constraint (found != 0) so that the symbolic execu-
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tion can go from node 7 to 13. Thus, this path is infeasible because symbolic execution

generates the constraint (0 != 0), which cannot be satisfied.

Table 1. Control and data flow test requirements
Criterion Requirements

all-nodes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

all-edges (1–2), (1–16), (2–3), (3–14), (3–4), (14–15)

(14–16), (15–16), (4-5), (4-6), (5–3), (6–7)

(7–8), (7–13), (13–3), (8–9), (9-10), (9-7)

(10–11), (10–12), (11–12), (12–9)

all-paths

(1-loop)

...

P01: 1 2 3 4 6 7 8 9 10 11 12 9 7 13 3 14 15 16

P02: 1 2 3 4 6 7 8 9 10 11 12 9 7 13 3 14 16

P03: 1 2 3 4 6 7 8 9 10 12 9 7 13 3 14 15 16

P04: 1 2 3 4 6 7 8 9 10 12 9 7 13 3 14 16

P05: 1 2 3 4 6 7 8 9 7 13 3 14 15 16

P06: 1 2 3 4 6 7 8 9 7 13 3 14 16

P07: 1 2 3 4 6 7 13 3 14 15 16

P08: 1 2 3 4 6 7 13 3 14 16

P09: 1 2 3 4 5 3 14 15 16

P10: 1 2 3 4 5 3 14 16

P11: 1 2 3 14 15 16

P12: 1 2 3 14 16

P13: 1 16

all-uses (2–(14,16)), (2–(14,15)), (2–(4,5)), (2–(4,6)), (2–15)

(number) (5–(14,16)), (5–(14,15)), (5–(4,5)), (5–(4,6)), (5–15)

The process of representing paths as constraint sequences to find suitable test data

to execute that path can be repeated for each path of the program under test. This process

generates test data to cover all test requirements generated by the structural testing criteria,

except for those related to infeasible paths.

3. Approach description

Approaches that emphasize control-flow criteria generate test data only for the whole

program or function [Pasareanu and Visser 2009, Godefroid 2012, Cadar and Sen 2013,

Galler and Aichernig 2013]. Given the motivating scenarios in which the generation of

test data to cover only a subset of test requirements is desirable (see Section 1), we present

an approach to automatically generate test data for covering only test requirements se-

lected by users. This approach generate test data to cover test requirements generated by

both control and data-flow structural criteria.

Our approach is broken down and executed in five steps. It starts when a user

provides the program under test along with the set of test requirements to be considered

during test data generation. Testers need to inform a list of nodes and edges to generated

test data to cover control-flow test requirements, and a list of def-use pairs or a list of

variable names to cover data-flow test requirements. When a variable name is provided, all

its def-use associations are taken into account during test data generation. We developed

a prototype to support all steps of this process. Section 3.1 describes the prototype and

Section 3.2 presents the details of each step of the approach supported by the prototype.

3.1. Prototype Implementation

We developed a proof-of-concept implementation to evaluate the efficiency of our ap-

proach. This prototype was implemented in Java and supports test data generation for

Java programs. For its first version, we only used integer data types and we did not handle

the integration between methods from the same class or package.



� � � � � � � � � � � 	 
 � 	 � � � � 
 	 � 
 � 	 � � � � � 
 � � � � � � � � � �

� �

Figure 2 shows the architecture of our prototype, which has four components.

Instrumenter instruments Java classes and generates the DUG to identify symbolic

expressions and constraints. The instrumentation occurs at bytecode level. This is one

of the advantages of this particular implementation since the source code is not required.

One of the limitation of current approaches is that the source code of external libraries is

usually unavailable, which ends up hampering integration testing [Cadar and Sen 2013].

In our prototype, however, it is possible to instrument external libraries since they are

usually available in bytecode representations.
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Figure 2. Architecture of the prototype

Path Analyzer receives a DUG and identifies all paths. Then, this compo-

nent selects paths that exercise the test requirements provided by the users. Each se-

lected path is sent to the component Constraint Analyzer, which generates a con-

straint sequence and identifies unsolvable constraints. Finally, constraint sequences are

sent to the component Constraint Solver, which produces the test data to cover

the user-defined test requirements. In this prototype, this component is implemented by

Choco [Team 2008], an open source java constraint programming library.

3.2. Steps of the approach

In this section, we discuss each step of the proposed approach, as presented below. We

use the example shown in Section 2 to further elucidate each step, considering that the

tester wants to generate test data to cover only test requirements related to the variable

number.

Step 1: Generate DUG. The tester must submit the name of the class to be tested,

the list of test requirements and the maximum number of loop iterations to be considered.

Listing 2 shows the snippet of the code used to invoke our prototype and generate test

data for the factorization method (Listing 1). Notice that the user provided the

class name (MyMath.class), the test requirements and the maximum number of of

iterations (i.e., 3). As for the test requirements, the user decided to provide only the name

of one variable (number), instead of selecting specific nodes, edges, or uses. The test

requirements (all def-use pairs) related to this variable are shown in Table 1.

The component Instrumenter analyzes the program under test and gener-

ates a DUG for each method. As mentioned, the resulting DUG represents the test re-

quirements related to control and data-flow criteria. Along with the DUG, the symbolic

value of each variable and constraint over each input data is defined. The DUG for the

factorization method is presented in Figure 1. Usually, the artifact used at this step

is the source code, but it is also possible to use binary or bytecode representations. We

do not provide an in-depth description of this step because each programming language
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or code artifact will require specific techniques to extract nodes, edges, and data usages

from the program under test.

Step 2: Identify all paths. The component PathAnalyzer uses heuristics

that employ depth first search algorithm to identify all possible paths given the DUG,

the set of test requirements to be covered, and a maximum number of loop iterations.

PathAnalyzer keeps the resultant paths in decreasing ordered according to the num-

ber of nodes. We adopted this strategy because executing paths with the highest number

of nodes first may cover more test requirements than the others. Thus, few paths have to

be selected and few constraints are sent to the constraint solver. At the first iteration in

PathAnalyzer, one loop iteration is considered. At the nth iteration, n loop iterations

are considered. Table 1 shows the list of paths generated for factorization (List-

ing 1) at the first iteration of PathAnalyzer.

Step 3: Find solutions The component ConstraintAnalyzer receives a list

of paths produced by PathAnalyzer and a set of symbolic expressions related to the

bytecode of the class under test. ConstraintAnalyzer executes an heuristic to select

only paths that have potential to cover at least one of the user-defined test requirements.

Starting from the first path of the list, the component generates a constraint sequence

and send it to a constraint solver. If the sequence has a solution, the test requirements

covered by the target path are excluded from the list of the test requirements to be covered.

The next path is selected only if it covers a test requirements of the to be covered list.

ConstraintAnalyzer select paths until one of those stop criteria are met: (i) there

is no path left, (ii) all test requirements selected by the user are covered, (iii) the specified

timeout expires, or (iv) the specified maximum number of loop iterations is reached.

In our example, the component ConstraintSolver received a set of con-

straint sequences sent by ConstraintAnalyzer and produced test data to cover the

test requirements provided by the user. Figure 3 shows the six input data produced by the

prototype (5, 2, 1, 10, 7 and 4) and the two test requirements that remained uncovered

after 3 iterations (5->(14-15) and 5->15).

4. Evaluation

In this section, we describe an initial evaluation of the proposed approach. We selected

a set of nine programs found in the literature. These programs comprise branches,

loops, and perform calculations on integer variables [Sedgewick and Wayne 2008,

Zhu et al. 1997, Rapps and Weyuker 1982, Pasareanu and Visser 2004, JPF ]. Table 2

lists the programs and some information about their DUGs. Notice that the selected pro-

grams have different characteristics, which allow us to evaluate diverse scenarios.

Using these programs and the prototype described in Section 3.1, we set up some

experiments that aim to analyze the approach from different points of view. Their settings

and results are discussed as follows. For the sake of mitigating sources of variability

(e.g., garbage collection operations and just-in-time compilation), and thereby carrying

out a more rigorous performance evaluation, the measured running times reported in this

section are the average (mean) execution time across 30 runs. Execution times were

measured in milliseconds and using an Intel Core i5-2450M 2.5GHZ with 6 GB RAM of

physical memory running Windows 7.

Table 3 shows the average time to generate input data that cover all test require-
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ments for all-nodes, all-edges, and all-uses. Notice that the all-uses criterion took more

time in all programs. Considering factorization, for instance, generating all test

requirements for all-uses took around 89% more time than all-nodes and approximately

78% more time than all-edges. However, in most cases, the overhead for generating test

data for all-uses was not high. For instance, considering concrete, our prototype took

around 57% more time to generate test data for the all-uses criterion than it did to create

test data for the all-nodes criterion. We already expected this behavior since data-flow

criteria tend to produce more test requirements and it takes extra steps to verify def-clear

paths. Yet, the average time was below 7 seconds, which is quite reasonable. These results

give some insights on the cost of using a symbolic execution-based approach to generate

test data for data-flow criteria.

Listing 2. Snippet of code used to invoke our prototype.
 !

1 S t r i n g className = ‘ ‘MyMath . c l a s s ’ ’ ;

2 TestReq [ 0 ] = new S t r i n g [ ] {} ; / / nodes

3 TestReq [ 1 ] = new S t r i n g [ ] {} ; / / edges

4 TestReq [ 2 ] = new S t r i n g [ ] {} ; / / u s e s

5 TestReq [ 3 ] = new S t r i n g [ ] {
6 ‘ ‘ number ’ ’

7 } ; / / v a r i a b l e s

8

9 i n t maxLC = 3 ; / / maximum loop c o u n t s

10 t e s t P r o j e c t = P r o t o t y p e ( className ,

11 TestReq , maxLC ) ;

12

13 f o r ( ClassModel c l : t e s t P r o j e c t . g e t C l a s s e s ( ) ) {
14 f o r ( MethodModel meth : c l . ge tMethods ( ) ) {
15 f o r ( T e s t D a t a t d : meth . g e t T e s t D a t a ( ) ) {
16 S t r i n g varName = t d . g e t V a r i a b l e ( ) ;

17 S t r i n g v a l u e = t d . g e t V a l u e ( ) ;

18 System . o u t . p r i n t l n ( varName +

19 ‘ ‘ = ’ ’ + v a l u e ) ;

20 }
21 }
22 }
"# $

Listing 2 Output

Output: N=5, N=2, N=1, N=-10, N=7, N=4

Uncovered uses: number:5->15, number:5->(14-15)

Figure 3. Output of running the code in Listing 2.

Table 4 shows the average time to cover samples of test requirements (25%) de-

rived from all-nodes, all-edges, and all-uses. These randomly selected samples cover

scenarios where the test suites do not achieve maximum coverage for some criterion. In

this experiment, we assume that, for instance, a test suite that covers 100% of all-edges

will cover around 75% of all-uses; which leaves around 25% to be covered using symbolic
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execution. As shown in Table 4, our prototype achieved a reasonable performance for all

programs (below 4.3 seconds). Our results would seem to demonstrate that all-uses is the

most computationally intense criterion. In the worst case (factorization), the time

spent on all-uses was around 114% longer than the time spent on all-edges. For gcd2,

however, there was a slowdown of only 25% (Table 4).

Table 2. General information about the programs used in our evaluation.

Program #
lo

o
p

s

#
n

o
d

es

#
ed

g
es

#
d

ef
s

#
c-

u
se

s

#
p

-u
se

s

#
d

ef
-u

se
a

ss
o

ci
a

ti
o

n
s

#
si

m
p

le
p

a
th

s

concrete 0 5 5 7 10 10 9 3

factorial 1 6 7 5 5 8 10 4

factorization 3 16 22 12 11 36 47 13

gcd2 1 4 4 5 4 4 5 2

gcd 1 7 9 4 9 12 24 4

generatePattern 2 12 15 5 3 20 28 5

m 2 10 12 7 6 18 18 8

myMethod 0 12 15 10 36 8 9 12

pow 1 9 11 10 20 10 17 8

Mean 1.22 9 11.11 7.22 11.56 14 18.56 6.56

Table 3. Average time (in ms) to generate all test requirements.
Program All-Nodes All-Edges All-Uses

concrete 7.13 9.93 11.27

factorial 19.75 20.2 35.24

factorization 3396.1 3613.44 6431.2

gcd2 3.79 3.79 16.65

gcd 10 12.75 48.65

generatePattern 1496.79 1561.62 1813.17

m 85.96 92.48 151.79

myMethod 24.24 24.62 29.37

pow 14.37 20.03 45.55

Min 3.79 3.79 11.27

Max 3396.10 3613.44 6431.20

STD‡ 1169.39 1240.72 2135.79
‡STD stands for standard deviation.

Table 5 shows the average times to cover one test requirement and all test re-

quirements for a specific variable, respectively. These results are based on the all-uses

criterion. The def-uses pairs (or variable) were randomly selected and represent two sce-

narios. First, the tester is trying to satisfy all-uses and need to come up with a unit test

that covers a specific def-use pair. In this context, the tester needs an immediate response

from the symbolic execution prototype. Second, the developer identifies a problematic

variable and wants to test it with different input data. Consequently, a fast feedback from

the prototype is also required. The results provide some promising insights: for the first

scenario, the average time was below 1 second, and 2.7 seconds for the second scenario.

Figure 4 shows the boxplots for the first scenario using the two programs in which the

prototype’s performance was below the average. Notice that, in the worst case (upper

whisker in the boxplot representing the factorization method), the execution time

was below 4 seconds.

Discussion. The lack of representativeness of the programs we chose to evaluate
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our prototype poses a threat to external validity. Apart from not being of industrial size,

another potential threat to the external validity is that the chosen programs do not differ

considerably in size and complexity. Consequently, we recognize that our research can

be seen as an initial exploration into understanding how symbolic execution can be used

to generate test data for data-flow criteria. The goal of our experiment was to provide

some evidence of the efficiency and applicability of our implementation in academic set-

tings. Therefore, further research is needed to support and expand the results of our initial

evaluation, yet we believe that our initial results are promising.

Table 4. Average time (in ms) to generate 25% of the test requirements.
Program All-Nodes All-Edges All-Uses

concrete 1.62 3.96 5.55

factorial 10.62 15.58 20.13

factorization 973.41 2003.31 4293.89

gcd2 3.68 3.62 4.55

gcd 3.86 8.1 24.58

generatePattern 740.1 1267.31 1423.51

m 31.27 43.17 48.72

myMethod 11.93 10.96 13.27

pow 9.55 12.17 22.17

Min 1.62 3.62 4.55

Max 973.41 2003.31 4293.89

STD‡ 377.85 738.35 1442.97
‡STD stands for standard deviation.

Table 5. Average time (in ms) for one test requirement and one variable.
Program One Test Requirement One Variable

concrete 3.15 6.33

factorial 19.4 29

factorization 808.65 2624.6

gcd2 4.75 10.5

gcd 6.47 31

generatePattern 434 858.5

m 19.7 56.5

myMethod 12.37 16.5

pow 10.5 32.66

The current state of our prototype prevented us from conducting experiments with

more complex programs [Eler et al. 2014]. The prototype handles only primitive data as

integers. It does not handle issues such as concurrency and the integration with other

methods or external libraries. Moreover, optimized heuristics and analysis techniques

are required to enable testing complex systems and eliminate infeasible requirements.

Nevertheless, it is worth mentioning that the purpose of our paper is not to present a

comprehensive way of avoiding the path explosion problem, but rather to introduce data-

flow criteria and related data generation in this testing context.

5. Related Work

For more than three decades, symbolic execution has been used in the context of software

testing to generate test data to cover testing criteria [King 1976, Cadar and Sen 2013].

However, symbolic execution poses several challenges. Several approaches have been

proposed to circumvent problems such as path explosion, concurrency, complex data, lim-

ited constraint solvers, and integration with external libraries [Pasareanu and Visser 2009,

Godefroid 2012, Cadar and Sen 2013].

Many improvements have been achieved in this field and several tools
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and techniques were proposed, including DART [Godefroid et al. 2005], CUTE

[Sen and Agha 2006], JCUTE [Sen and Agha 2006], Klee [Cadar et al. 2008], PEX

[Tillmann and De Halleux 2008], LCT [Kahkonen et al. 2011], Klover [Li et al. 2011],

among many others [Galler and Aichernig 2013]. Regardless the technique to mitigate

symbolic execution limitations and the technology employed, most of them are gener-

ally used to generate test data to satisfy control-flow criteria (lines of code, instructions,

branches, paths) for an entire program or function.

Figure 4. Execution time for one test requirement for the programs

factorization and generatePattern).

From a practical standpoint, however, testers may already have a test suite im-

plemented with test cases and oracles. Sometimes it is important to generate test data to

cover only specific parts of the code, often related to data-flow. Specifically, Gupta et

al. [Gupta et al. 2000] propose an approach that aims to cover a given branch (which is

a test requirement for all-edges). The paper focuses on selecting paths, that lead to the

branch under test, with less resistance for test data generation. Their approach dynami-

cally searches for better paths, eliminating infeasible or likely infeasible paths along the

process.

Although the theoretical foundations for data-flow criteria have been laid for more

than twenty five years, there is scant tool support for the criteria. Horgan and Lon-

don [Horgan and London 1991] report on the difficulties of implementing data-flow cri-

teria for the C language. By adapting the family of data-flow coverage criteria of Rapps

and Weyuker [Rapps and Weyuker 1985], which is tailored to an idealized programming

language, Horgan and London defined the following data-flow coverage measures for C

programs: blocks, decisions, definitions, p-uses, c-uses, all-uses, and du-paths. They also

implemented these data flow coverage measures in testing tool called ATAC. This tool

helps testers to improve coverage by highlighting non-covered elements. By perusing the

dataflow relationships in a program, testers hand-craft tests in hopes of increasing cover-

age. Similarly to our approach, ATAC enables testers to focus on a given slice of code at

a time. In effect, the main benefit of using ATAC is that the resulting tests are aimed at

exercising non-covered elements. The main drawback is that ATAC does not support test

data generation, which renders test creation for large or even moderately-sized programs

burdensome.

Most data-flow criteria and implementations thereof are tailored to procedu-
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ral languages. Although some of these criteria can be applied to object-oriented

programs, they fail to capture the data-flow interactions that take place when users

of a class invoke sequences of methods in a random order. Harrold and Rother-

mel [Harrold and Rothermel 1994] came up with an approach to support the testing for

all types of data-flow relationships in a class. They define three levels of dataflow testing:

(i) intra-method, which is aimed at testing individual methods, (ii) inter-method, whose

purpose is testing methods in a class that interact through invocations, and (iii) intra-class,

whose goal is testing sequences of method calls. In their approach, classes are represented

as single-entry, single-exit programs, which makes it possible to identify def-use pairs for

these types of data-flow criteria.

Several tools have been developed to perform many types of static analysis. A

notable example is Frama-C [Cuoq et al. 2012]. This source code analysis platform al-

lows to verify that C programs comply with a given formal specification. In addition,

using Frama-C it is possible to slice a given program into smaller chunks of code and

navigate the dataflow of these chunks, from definition to use as well as from use to defi-

nition. As pointed out by Cuoq et al. [Cuoq et al. 2012], Frama-C provides its users with

a vast collection of plugins. One of these plugins is PathCrawler [Williams 2010], which

automatically finds test inputs that cover all the feasible execution paths of a given C func-

tion. Differently from our tool, PathCrawler is based on a dynamic symbolic execution

method. Thus, the program under test is executed under each generated test case. After-

wards, traces of the resulting execution paths are examined to determine whether the test

cases activated the intended execution paths.

Although much of the groundwork for test case generation has been laid, much

remains to be explored. For instance, there is a lack of approaches that aim to generate

inputs to cover data-flow test requirements. Moreover, most of the existing approaches

are focused on reaching a full criterion coverage. To the best of our knowledge, only the

research of Gupta et al. [Gupta et al. 2000] deals with covering a given test requirement

for branch coverage.

6. Concluding Remarks

This paper presented an approach to generate test data only for test requirements (for

both control and data-flow) selected by users. A preliminary evaluation of the approach

showed that, considering the whole program, generating input data for data-flow crite-

ria entails more computation, especially because they produce more test requirements

than control-flow criteria. Another reason is that many data-flow test requirements are

infeasible and the test data generation only stops when a given time budget elapses or a

specified number of loop iterations is reached. In our opinion, this is not a prohibitive

problem since there are techniques to identify and remove infeasible data-flow test re-

quirements [Vergilio et al. 2006].

However, our aim was not to show that generating test data for data-flow criteria is

as effective as for control-flow. The purpose was to support testers on generating test data

for covering test requirements which were not covered by existing test suites. Another

contribution of our approach is that users may direct test data generation without knowing

specific details about structural testing criteria. They can provide a variable name and our

prototype is able to generate test data covering all test requirements related to this variable,
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especially def-use associations.

As future work, we intend to extend the prototype to deal with more complex data

types and different criteria (like all-du-paths and MC/DC). Yet regarding our prototype,

we intend to allow users to select lines of the code instead of nodes, and sequence of

lines instead of edges. Moreover, heuristics and techniques to perform optimizations on

the path exploration algorithm and constraint sequences generation could be investigated.

Finally, we intend to explore the application of data-flow and relative input data generation

in the context of dynamic symbolic execution (concolic testing) [Sen and Agha 2006].
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