
Identifying Characteristics of Java Methods that
May Influence Branch Coverage:

An Exploratory Study on Open Source Projects
Camila Faria de Castro, Decio de Souza Oliveira Jr and Marcelo Medeiros Eler

EACH - Escola de Artes, Ciências e Humanidades
Universidade de São Paulo

São Paulo - SP - Brasil
{camila.faria.castro,decio.oliveira,marceloeler}@usp.br

Abstract—Software testing is an important activity to assure
the quality of software. Testing techniques and criteria have
been created over time to help testers to devise high quality
test suites. However, duly and systematically testing a software
to reach high coverage on criteria, such as branch coverage,
requires much effort. In this context, identifying characteristics
of a software that may influence branch coverage is important
to create software easier to test since the beginning. Therefore,
the main purpose of this paper is to present an investigation
conducted by us to identify the differences between methods
whose branches were fully covered and the methods that have
been partially covered. This investigation has been conducted on
39 open source Java projects.

Index Terms—software testing, testability, branch coverage,
static analysis, symbolic execution.

I. INTRODUCTION

Software testing is an important process to ensure that a
software product will deliver the expected quality properties.
It consists of executing a program under test with the aim of
revealing failures [15]. It is unpractical or even impossible to
test a software against all possible test case scenarios, therefore
one can only prove the presence of defects, not their absence.
In this context, testing techniques have been created to help
testers to systematically devise and select test cases that are
more likely to reveal a yet unrevealed failure. Such techniques
also provide testers with useful criteria to evaluate the quality
of their test suite.

Structural testing is a common technique whose main goal is
to ensure that all structures of the program under test have been
executed. Particularly, the all-branches criterion tries to assure
that all control flow deviations within the program structure
have been executed at least once. Although controversial, the
coverage of structural testing criteria, such as branches and
lines, for example, has been used as a metric to evaluate
the overall quality of a test suite. The effort to achieve high
coverage on structural testing criteria, however, may be huge
or even prohibitive depending on its size and complexity.

In a context in which software complexity grows and
vendors are more concerned about software quality due to
an overcrowded and competitive market, reducing the effort

and increasing the accuracy of the software testing activities
may be crucial. Therefore, the main goal of this paper is
to identify characteristics of a software that may influence
testers on creating test cases to achieve high coverage of
branches. Accordingly, we present an exploratory study that
we have conducted over 39 open source Java projects from
the perspective of the unit testing phase. We investigated
the influence of structure, size and constraints on the branch
coverage achieved by the test cases publicly available.

To achieve our goals we have compared characteristics of
the methods for which the testers have reached full branch
coverage with the methods whose branches have been only
partially covered. Among other characteristics, we have taken
into account the metrics used in a previous work to analyze
which properties of a method could influence the effort of
generating test data using symbolic execution [10]. These
metrics are related to method’s control flow structure (e.g.
loops, nested loops, cyclomatic complexity), size (e.g. number
of instructions, number of input arguments), and constraints
(e.g. data types, number of elements, number of constraints,
exceptions). Some of these metrics were collected directly
from the Java bytecode, while others, such as constraint infor-
mation, have been collected after symbolic execution. As we
used test artifacts collected from open source repositories, we
have considered only code coverage to draw our conclusions
regarding the influence of the investigated factors. We have
not considered, for example, the time spent to create each test
suite, which is an important variable when it comes to test
effort.

We believe that the results of this investigation may provide
an insight into what makes a software easier to test, in a way
that structural testing requirements can be accomplished and
ideally without much effort. In spite of being a preliminary
study, it statistically quantifies the relation of specific metrics
to the obtainment of fully or partial code coverage in test
cases, fomenting the discussion of the topic in the area and
contributing with more detailed studies to be developed in the
future.

The remainder of this paper is organized as follows. Sec-

978-1-5090-3339-3/16/$31.00 2016 IEEE

tion II presents the related work. Section III and Section IV
shows the configuration of the study and the results we
obtained, respectively. Section V discusses the results of our
investigation, Section VI indicates final recommendations for
software developers who aim to achieve deeper branch cover-
age based on our preliminary results, and, lastly, Section VII
presents the concluding remarks and future directions.

II. RELATED WORK

Several research papers have been published in the literature
with respect to software testability and factors that may
influence the effort to generate a complete test suite. Most
of these work are related to the testability of object oriented
software. Binder defines software testability as the relative ease
and expense of revealing software faults [6]. He establishes
that the effort to test object-oriented software is a result of
several factors, such as characteristics of the representation,
characteristics of the implementation, built-in test capabilities,
the test support environment and the software development
process, for instance.

Voas and Miller [18, 19] suggest that software testability
decreases when an information computed by the program is
not returned as an output. Baudry [5] measured the test effort
considering object oriented designs such as UML diagrams.
Briand et. al [7] analyzed the effect of contracts (precondition
and post condition of operations and invariants) on testability.
Zhou et. al [20] investigated five property dimensions of a
class that may impact testability, including size, cohesion,
coupling, inheritance, and complexity. Many authors have
focused on studying the impact of the CK metrics [8] on
software testability [1, 3, 4, 13, 17].

Most of related work on testability focus on characteristics
of the process, of the abstractions and models, and in the object
oriented characteristics. They are also concerned with the most
general concept of testability, related to the control and observ-
ability issues. Few approaches have investigated characteristics
of the implementation that may lead to high or low coverage of
some specific criterion such as branch coverage. Moreover, as
far as we know, there is not any approach that have investigated
the impact of the characteristics of a method regarding the
characteristics of its constraints and using symbolic execution.

III. STUDY SETUP

This section describes the configuration of the study we
undertook to identify characteristics of a method that may
influence full or partial branch coverage. First, we present
the research questions of this investigation. Following, we
discuss the granularity of our analysis, i.e., what artifacts we
have considered during our study. Next, we reason about the
criterion we used to differentiate the two groups of methods we
compare in our study. Then, we discuss how we have chosen
the open source projects we have analyzed. Finally, we show
the metrics we have chosen to compare the two groups of
methods and how we have collected their data.

A. Research questions

We have conducted our investigation based on three research
questions:

• RQ1 - What is the influence of control-flow structure in
branch coverage?

• RQ2 - What is the influence of constraints in branch
coverage?

• RQ3 - What is the influence of the method size in branch
coverage?

B. Scoping and granularity

Several artifacts produced during a software development
process may impact the testability of a software. In this study,
however, we want to investigate which characteristics at code
level may lead to full or partial branch coverage. Particularly,
we want to understand the impact of each investigated charac-
teristic with respect to the unit testing phase. For this particular
investigation, we have decided to adopt the method as the
smallest unit. Therefore, we only resort to metrics related to
the method itself without considering the characteristics of the
class it belongs to.

C. Testability criteria

The effort required to test software is extremely related
to its testability. Testability is an important quality indicator
since its measurement leads to the prospect of facilitating and
improving a test process. It has been been defined as the degree
to which a system or component facilitates the establishment
of test criteria and the performance of tests to determine
whether those criteria have been met [12]. According to [16],
a relevant measure to assess the testability is how many
test cases are needed to form a complete test suite, which
unambiguously determine whether the software is correct or
not according to some specification. A common approach to
evaluate whether the test suite is complete is resorting to
testing criteria such as the all-branches criterion[2].

In general, it is not possible to prove that a program is free
of defects, hence it is not possible to establish for sure whether
a test suite is complete or not. Given this limitation, we have
decided to resort to a common criterion used by testers to
evaluate the quality and completeness of their test suites: code
coverage. In the context of this paper, we consider a complete
test suite one that can achieve 100% of branch coverage on
its target.

D. Sample selection

In hopes of selecting an unbiased sample of Java programs,
we have selected a third party benchmark named SF1101,
which is an evolution of the SF100 benchmark [11]. SF110
is made up of a collection of 110 open source Java projects
that differ considerably in size, complexity, and application
domains.

From the 110 projects of SF110, we have selected only
those projects whose test cases were available and written in

1http://www.evosuite.org/experimental-data/sf110/

the JUnit2 format because we have automated the execution
of the test cases and the measurement of the code coverage
through the Apache Ant3 tasks and Jacoco4 tool, respectively.
During our analysis, we have excluded 50 projects because no
test cases were available, 14 projects because the test cases
were not written in the JUnit format, and 7 projects due to
compilation and library issues. Therefore, after applying all
criteria, only 39 out of the 110 projects remained. These 39
projects have 16,125 classes and 114,718 methods altogether.

The main goal of this exploratory study is to identify
which characteristics of methods may impact the effort of
testing activities and, in particular, achieving full or partial
branch coverage. There are methods, however, which poses
no challenge to testers. Such methods are those whose bodies
are empty or have only one execution path, i.e., there is no
constraint to be analyzed due to absence of branches. Methods
that have only one path are often associated with attribute ac-
cessors (getters and setters) and constructors, meaning that any
input will result in a complete execution of the method [10].

A constraint is simply a logical relation among several
elements in which their possible values is restricted. The
elements of a constraint may have different data types (e.g.
integer, float, object) and categories (e.g. variable, method call,
constant). A constraint is typically defined by instructions such
as if, swich, while, for, and so forth. However, in this study,
we also consider implicit constraints that arise from exception
handling environments. For instance, many static analysis tools
would consider the excerpt of code try doSomething();
catch(ExceptionType et) as constraint free, but in our
approach we consider that the following constraint is present:
if (ExceptionType condition). This means that
(ExceptionType condition) must be replaced by a
condition in order to raise or avoid the target exception.

After a further analysis of the 114,718 methods of the 39
analyzed projects, we have excluded 82,351 due o the absence
of constraints. According to our initial plan, the remaining
32,367 should be split in two groups: Full Branch Coverage
and Partial Branch Coverage. The Full Branch Coverage
were supposed to contain the methods whose branches were
100% covered after executing the test cases provided by the
developers, while the Partial Branch Coverage were suppose
to contain the methods whose branches were covered only
partially. In that sense, the distinct characteristics of the two
groups would give an insight, at least in this context, which
characteristics may have influenced those methods to be fully
our partially covered.

The limitation of using a third party benchmark, however,
is that there is no guarantee that the testers have put a lot
of effort into the testing activities to achieve high coverage
on some testing criteria such as all branches, for example.
In that sense, one does not know whether a method has
only 40% of its branch covered due to lack of effort or due

2www.junit.org
3http://ant.apache.org/
4www.eclemma.org/jacoco/

to its intrinsic characteristics that may difficult its test and
consequently achieving high coverage. Similarly, we cannot
know, for example, whether a method whose branches were
85% covered had not been completely covered due to its
characteristics, infeasible paths or even because the goal of
the tester was not reaching 100% of code coverage, but a
certain minimum level.

Given these limitations, comparing the characteristics of
methods that reached 100% of branch coverage with those
whose branches were not completely covered would not give
us real insights on which factors may lead to full or partial
branch coverage. Therefore, we decided to put into the Partial
Branch Coverage only methods in which more than 50% of
the branches were executed. Again, there is no guarantee that
the testers have put a lot of effort to test these methods and
their characteristics may be the reason why they were not fully
covered. Nevertheless, we can assume that at least some effort
was required to achieve more than 50% of branch coverage
and it is a way of mitigating the limitations of using a third
party benchmark.

At the end of the sample selection process, 2,469 methods
had 100% of their branches covered and therefore they were
put into the Full Branch Coverage group, while 2,114 methods
had more than 50% and less than 100% of their branches
covered and consequently they were put into the Partial Branch
Coverage group.

E. Metrics selection

In previous work, Eler et. al [10] have investigated the
characteristics of Java programs that may influence test data
generation based on symbolic execution and from the context
of unit testing. Broadly, they have collected metrics to under-
stand in which frequency and/or the distribution the commonly
reported issues of that context appear, namely path explosion,
constraint complexity, dependency and exception-dependant
paths. All metrics have been collected considering the method
as the smallest unit.

In this context, we assumed that the same issues that may
hamper test data generation based on symbolic execution
might also hinder testers when manually creating test cases
to meet testing criteria, such as branch coverage, for instance.
In fact, testers sometimes have to mentally and symbolically
execute a method under test to discover which test inputs
would cause a particular path to be traversed. Therefore, we
decided to use some of the metrics used in that specific
investigation.

The metrics we analyze in our exploratory study are related
to its control-flow structure, its constraints, and its size. When
it comes to the control-flow structure metrics, we calculate the
cyclomatic complexity, the number of loops and the number
of nested loops. Such metrics are important to characterize
how many independent paths a method present and what is
the potential for path explosion, i.e., increasing the number of
paths to handle such that it is too difficult to handle. The
constraints of a method (or predicates) may be simple or
complex. Constraints that contain only integers and simple

variables (e.g. (x==5)), for example, are easier to handle
than constraints that include method calls and complex types
such as objects and arrays (e.g. (m.foo()==array[x])).
Therefore, we collect the number of constraint elements of
each data type (e.g. integer, float) and category (e.g. method
call, variable). Regarding the method size, we collect the
number of instructions, the number of constraints and the
number of input arguments.

F. Data extraction

In previous work, a tool called CP4SE5 (Constraint Profiling
for Symbolic Execution) have been developed to perform static
analysis of Java Bytecode [9, 10]. This tool has been adapted
over time to collect several static metrics of Java programs,
including the metrics defined in Section III-E.

It is important to mention that the metrics related to
the control-flow structure and the size of the method were
collected from the method as it is. However, the metrics
related to the constraints (types and category of the elements)
were collected after symbolically executing each method. We
decided to collect these metrics after performing symbolic
execution because we claim that it represents a more realistic
complexity analysis of the constraints of a method. In fact,
when a tester is trying to figure out which test input would
cause the execution of a particular path or branch, he or she
has to mentally and symbolically execute the code at some
level.

Listing 1 shows an example of a method before
and after symbolic execution. Notice that the constraint
(ration<0.75) may look extremely simple at first, but
in fact it depends on method calls and two multiplications. In
the code before symbolic execution, the constraint (Line 5)
that may lead the method to returning false or true has two
elements: a float type variable and a constant. The constraint
after symbolic execution is presented as a comment (Line 5).
It has seven elements: two integer variables (x and y), one
object used twice (wd), two method calls (getHeight() and
getWidth()), and a constant (0.75).

Listing 1: A simple method before symbolic execution

1 public boolean m1(Window wd, int x, int y){
2 int h = wd.getH();
3 int w = wd.getW();
4 int sq = x * y;
5 int sqwd = h*w;
6 float ratio = (float) sq/sqwd;
7 if (ratio<0.75)
8 //((x * y)/(wd.getH()*wd.getW())<0.75)
9 return true;

10 return false;
11}

The CP4SE tool writes all metrics collected on the an-
alyzed projects to a .CSV file. Each line contains the in-
formation of a particular method. In this study, we crossed
the information provided by the Jacoco tool regarding the

5https://github.com/marceloeler/CP4SE

code coverage with the files generated by CP4SE in order
to generate one file for each group of methods considered
in this paper: FULL, whose methods had 100% of their
branches covered; and PARTIAL, whose methods had more
than 50% and less than 100% of their branches exercised.
The data of these two groups of methods can be found here:
http://each.uspnet.usp.br/marceloeler/sccc16/.

G. Threads to the validity
This results of this study may be influenced by two main

factors: the subject programs and the tool that extracts the
metrics we have analyzed. The subject programs are open
source software and we have no information on how their test
cases have been desgined by the developers and testers. We
are not sure that their intention was to reach high coverage in
a structural testing criterion such as all-branches, for example.
Consequently, the decision to analyze only methods which
more than 50% of the branches have been executed may
influence the results.

Moreover, the way CP4SE symbolically executes the subject
programs and extracts the metrics may also influence the
results of this study. CP4SE does not perform intraprocedural
integration, which means that the analysis is based on the unit
testing perspective. This tool also considers only one iteration
on each loop of the program, even when several loops may be
required to cover a specific branch. For more information on
how CP4SE extract metrics from a Java program we refer to
the work of Eler et al. [9, 10].

IV. STUDY RESULTS

According to our sampling process, 2,469 methods had
100% of their branches covered, hence they were labeled as
FULL, while 2,114 methods had more than 50% and less
than 100% of their branches executed, therefore labeled as
PARTIAL. From now on, we refer to the full covered group of
methods as FULL and the partially covered group of methods
as PARTIAL. It is important to mention that most methods
in PARTIAL had from around 70 to 85% of their branches
covered, which may imply that this set of methods had been
target of careful test tasks. The following subsections show the
comparisons between these two groups regarding control-flow
structures, constraints, and size.

A. Control-flow structure
When it comes to the control-flow structure metrics, we

calculate the number of loops and nested loops, and also
the cyclomatic complexity of each method. The cyclomatic
complexity is a quantitative measure of the number of linearly
independent paths through a program’s source code. The more
paths to handle, the more difficult it is to completely test
a method. The number of loops and nested loops is also
a significant factor to investigate since their presence may
imply much more execution paths to handle before covering
all branches of a method under test.

Figure 1 shows the boxplot comparing the cyclomatic
complexity of the methods in PARTIAL and FULL. The cyclo-
matic complexity of the methods in PARTIAL are much larger

than the cyclomatic complexity of the methods in FULL. Table
I shows the distribution of methods by cyclomatic complexity.
One of the most remarkable differences is that only 3% of the
methods in PARTIAL have 2 linearly independent paths, while
52% of the methods in FULL have the same characteristic.
Another striking difference is that 25% of the methods of
PARTIAL have more than 10 linearly independent paths, while
only 0.3% of the methods in FULL have this same number of
paths.

Fig. 1: Boxplot with the cyclomatic complexity of groups
PARTIAL and FULL

TABLE I: Number of method for each amount of loop

Cyclomatic Complexity PARTIAL FULL
2 61 (3%) 1299 (52.5%)
3 401 (19%) 577 (23%)
4 355 (16%) 227 (9%)
5 250 (12%) 133 (5%)
6 176 (8%) 70 (3%)
7 146 (7%) 40 (1.5%)
8 98 (4.5%) 23 (1%)
9 93 (4.5%) 23 (1%)

>=10 534 (25%) 77 (0.3%)

TABLE II: Comparison between PARTIAL and FULL consid-
ering the number of loops

Loops Nested Loops
Number PARTIAL FULL PARTIAL FULL

0 956 (45%) 1364 (55%) 1697 (80.5%) 2263 (92%)
1 700 (33%) 889 (36%) 242 (11.5%) 142 (5.5%)
2 242 (11.5%) 145 (6%) 80 (4%) 38 (1.5%)
3 93 (4.5%) 37 (1.5%) 41 (2%) 17 (0.6%)

>=4 123 (6%) 34 (1.5%) 54 (2.5%) 9 (0.3%)

Concerning the number of loops, most methods of both
PARTIAL and FULL have at least one loop structure. How-
ever, only around 20% of the methods in PARTIAL have
nested loops, while 8% of the methods in FULL present this
same characteristic. Table II shows a comparison between the
number of methods for each number of loops and nested loops,
respectively.

B. Constraints

The effort to test a particular method may be impacted by
the characteristics of its constraints. First, we measured the
number of constraints of each method, considering the mean
number among its paths. Then, we analyzed the data types
(e.g. integer, float) and the categories (e.g. variable, method
call) of the constraint elements.

Figure 2 shows a boxplot that compares the mean number
of constraints. This boxplot clearly shows that the methods of
the PARTIAL group has more constraints to be solved than the
methods of FULL. Table III shows the distribution of methods
by each number of constraints. Notice that 80% of the methods
in FULL has up to 2 constraints, while only around 10% has
more than 3 constraints. This is in line with the fact that the
methods in FULL have less execution paths to handle than the
methods in PARTIAL.

Fig. 2: Boxplot with the number of constraints

TABLE III: Frequency of methods by number of constraints

Number constraints PARTIAL FULL
1 52 (2.5%) 924 (37.5%)
2 677 (32%) 1070 (43.5%)
3 409 (19%) 250 (10%)
4 326 (15.5%) 124 (5%)
5 175 (8%) 44 (2%)
6 149 (7%) 30 (1.5%)

>=7 326 (15.5%) 27 (1%)

The number of constraints may not imply a method too
difficult to test, as long as the constraints are simple to solve.
That is why we compare the two groups with respect to
the number of elements of their constraints. Figure 3 shows
a boxplot with this comparison. Notice that the number of
elements in PARTIAL is higher than the number of elements
in FULL.

Beyond the number of constraints and constraint elements,
we have investigated the complexity of the constraints by
looking at the data types and the category of their elements. We
found out that the two most popular types are the integer (2032
methods in PARTIAL and 1975 in FULL) and object (1898 in
PARTIAL and 1897 in FULL). The null (1019 in PARTIAL

Fig. 3: Boxplot with the number of constraint elements

and 624 in FULL) and array types (696 in PARTIAL and 498
in FULL) are also common, but float and string types are not.
Notice that proportion of methods that present the same data
types are also quite similar in both groups.

Considering the category types, we found out that, in
PARTIAL, 2,080 (98%) methods have constants, 2,032 (96%)
methods have variables, 1,912 (90%) methods have method
calls, and 317 (15%) methods have exception dependant paths,
i.e., methods that are executed only when a particular excep-
tion is raised. In FULL, 2,314 (94%) methods have constants,
2,287 (93%) methods have variables, 1,642 (66%) methods
have method calls, and 198 (8%) methods have exception
dependant paths. The distribution of constants and variables
are about the same, but the number of elements that are method
calls or exception-related constraints is higher in PARTIAL.

C. Size

Figure 4 shows a boxplot comparing the PARTIAL and
FULL group with respect to the number of Bytecode instruc-
tions of each method. It is clearly shown that the methods
of the PARTIAL group has much more Bytecode instructions
than the methods in the FULL group. Most of methods of
PARTIAL has from nearly 40 to 100 Bytecode instructions
while most methods of FULL has from around 20 to 40
Bytecode instructions.

Table IV show the distribution of methods by each number
of input arguments. Notice that the frequency of methods in
each group with the same amount of input arguments are
almost the same.
TABLE IV: Number of method arguments for each amount of
loop

Number of input arguments PARTIAL FULL
0 900 (42%) 1071 (43%)
1 731 (34.5%) 860 (35%)
2 257 (12%) 326 (13%)

>=3 226 (10.5%) 212 (8.5%)

Fig. 4: Boxplot with the number of bytecode instructions

V. DISCUSSION

In this subsection we provide a discussion on the results
we have obtained in our investigation. The discussion will
be around the three main characteristics we have considered:
control-flow structure, constraints, and size.

RQ1 - What is the influence of control-flow structure
in branch coverage? When it comes to the control flow
structure of a method, it is clear that the most important
characteristic that may influence full or partial branch coverage
is the cyclomatic complexity. The difference between the two
groups of methods is an evidence that methods should have
limited number of linearly independent paths. In the context
of this investigation, methods with cyclomatic complexity up
to 4 have more chance to be fully covered than methods with
complexity ciclomatic over 4. When it comes to the number of
loops, the methods in FULL have less loops and nested loops
than the methods in PARTIAL, but it is not an outstanding
difference.

RQ2 - What is the influence of constraints in branch
coverage? The most outstanding difference in this type of
analysis is the number of constraints and the number of
constraint elements in each method. It is in line with the fact
that the methods in PARTIAL have more bytecode instructions
and execution paths than methods in FULL. We expected that
the complexity of the constraints, regarding their category or
data types, would emerge in our investigation, but they appear
to be very similar when we consider how much each element
contribute to the structure of the constraints.

RQ3 - What is the influence of the method size in branch
coverage? The number of byte code instructions seems to
be a factor that makes difference when testing a method. It
is natural that the more code written, the more complex the
method is, hence it is more difficult to test. That is why long
methods are considered code smells. We expected the number
of arguments of a method would have some impact on our
analysis, but both groups are about the same when it comes
to this characteristic.

It seems that, apart from the cyclomatic complexity and the

TABLE V: Correlation between cyclomatic complexity, number of constraints, number of constraint elements and number of
instructions

PARTIAL FULL
Factor CC Cnstr Elem Instr CC Cnstr Elem Instr

CC 1.0000000 0.7522520 0.5654953 0.6274813 1.0000000 0.7709065 0.5230226 0.4878781
Cnstr 0.7522520 1.0000000 0.7070565 0.6307769 0.7709065 1.0000000 0.6843779 0.5446451
Elem 0.5654953 0.7070565 1.0000000 0.5853424 0.5230226 0.6843779 1.0000000 0.5030967
Instr 0.6274813 0.6307769 0.5853424 1.0000000 0.4878781 0.5446451 0.5030967 1.0000000

number of constraints and constraint elements, the methods of
the two groups share many similarities. In fact, the number
of constraints may be directly impacted by the cyclomatic
complexity, once the more number of execution paths, the
more number constraints, and probably the more number of
constraint elements. To check whether these factors are inline,
we have calculated the correlation between them, which is
shown in TableV.

This table shows that there is a positive correlation between
the factors we have investigated. There is a positive and linear
relationship between the cyclomatic complexity (CC) and the
number of constraints in both groups. There is a also a positive
and linear relationship between the number of constraints with
the number of constraint elements in PARTIAL, but moderate
in FULL. The relationship between the number of instructions
and other factors are moderate in both groups.

VI. RECOMMENDATIONS

Based on the discussed results of this study, we are now able
to recommend some best practices to be followed by software
developers who aim to facilitate the process of software testing
in the future.

It was demonstrated that methods with limited number of
linearly independent paths and with smaller size are more
likely to be fully covered, because in these cases the methods
are less complex. Therefore, developers are advised to reduce
the number of instructions and the cyclomatic complexity in
methods in development. One way of doing this is suggested
by McCabe in its original applications [14]: limiting the com-
plexity of methods through the establishment of a maximum
permitted value for cyclomatic complexity. When such value is
reached for a method, it could be divided into smaller methods,
aiming to reduce each one’s complexity and size, resulting in
an easier process of testing.

Moreover, the number of loops and nested loops were
smaller in fully covered methods. Even if the identified
difference is not outstanding, it is suggested for software
developers to reduce its number in their implementations, once
they increase a method’s complexity for being, in a general
case, a decision point.

VII. CONCLUDING REMARKS

In this paper we have presented an exploratory study aiming
at identifying characteristics that may influence testers on
reaching high coverage levels on structural testing criteria such
as all-branches. We have explored 39 open source projects to
compare the characteristics of methods whose branches were

100% covered with the methods whose branches were more
than 50% and less than 100% covered.

In conclusion, we found out that there are some factors
that have significant influence on the coverage results: it
was demonstrated that cyclomatic complexity, size, number
of constraints and number of constraint elements are strongly
correlated to the branch coverage. The correlation between the
studied characteristics shows that the cyclomatic complexity
have high influence on branch coverage and it also has a pos-
itive influence on the number of constraints, which influences
branch coverage as well. The number of constraints has a
positive relationship with the number of constraint elements,
but the cyclomatic complexity has only a moderate relationship
with the number of constraint elements and the number of
instructions.

We believe that this preliminary study is useful to provide
some insight into how characteristics of software may influ-
ence its resultant coverage. Although the obtained results could
be easily derived by experienced developers, it is essential
to verify such concepts numerically, making use of statistical
models to systematically prove correlations of certain metrics
in the branch coverage.

Apart from the factors that clearly influence branch cov-
erage, the complexity that emerge from the data type and
the category type of the constraint elements is worthy in-
vestigating. The number of elements is moderately influenced
by the cyclomatic complexity, but it would be interesting to
perform further investigations to discover independent factors
that influence branch coverage coming from the structure of
the constraints, either by their data or category type, or com-
plexity of the expressions, dependency of other constraints,
and many other related factors. This study also motivates
further and future investigations to identify which are the
dependent and independent factors that causes the software
to be partially covered. In future investigations we intend to
compare methods from FULL and PARTIAL groups that share
the same size and constraint complexity to discover whether
there are more factors that can lead to high or low branch
coverage.

Acknowledgments.: Marcelo M. Eler is partially finan-
cially supported by FAPESP (Sao Paulo Research Foundation,
Brazil), grant 2014/08713-9. Camila F. Castro and Decio S.
Oliveira Jr are partially financially supported by the Tuto-
rial Education Program of the Brazilian Education Ministry
(PET/MEC).

REFERENCES

[1] R. S. Abdullah and M. H. Khan. Testability estimation
of object oriented design:a revisit. International Jounal
of Advanced Research in Computer and Communication
Engineering, pages 3086–3090, numpages = 5,, Aug.
2013. ISSN 2319-5940.

[2] R. Bache and M. Mullerburg. Measures of testability as
a basis for quality assurance. Softw. Eng. J., 5(2):86–92,
Apr. 1990. ISSN 0268-6961. doi: 10.1049/sej.1990.0011.
URL http://dx.doi.org/10.1049/sej.1990.0011.

[3] L. Badri and F. Tour. An empirical analysis of lack of
cohesion metrics for predictiong testability of classes. Jan
2011.

[4] M. Badri, F. Toure, and L. Lamontagne. Predicting
unit testing effort levels of classes: An exploratory
study based on multinomial logistic regression mod-
eling. Procedia Computer Science, 62:529 – 538,
2015. ISSN 1877-0509. doi: http://dx.doi.org/10.1016/j.
procs.2015.08.528. URL http://www.sciencedirect.com/
science/article/pii/S1877050915026630. Proceedings of
the 2015 International Conference on Soft Computing
and Software Engineering (SCSE’15).

[5] B. Baudry and Y. L. Traon. Measuring design testa-
bility of a uml class diagram. Inf. Softw. Technol.,
47(13):859–879, Oct. 2005. ISSN 0950-5849. doi:
10.1016/j.infsof.2005.01.006. URL http://dx.doi.org/10.
1016/j.infsof.2005.01.006.

[6] R. V. Binder. Design for testability in object-oriented
systems. Commun. ACM, 37(9):87–101, Sept. 1994.
ISSN 0001-0782. doi: 10.1145/182987.184077. URL
http://doi.acm.org/10.1145/182987.184077.

[7] L. C. Briand, Y. Labiche, and H. Sun. Investigating the
use of analysis contracts to improve the testability of
object-oriented code. Softw. Pract. Exper., 33(7):637–
672, June 2003. ISSN 0038-0644. doi: 10.1002/spe.520.
URL http://dx.doi.org/10.1002/spe.520.

[8] S. Chidamber and C. Kemerer. A metrics suite for
object oriented design. Software Engineering, IEEE
Transactions on, 20(6):476–493, Jun 1994. ISSN 0098-
5589. doi: 10.1109/32.295895.

[9] M. M. Eler, A. T. Endo, and V. H. S. Durelli. Quan-
tifying the characteristics of java programs that may
influence symbolic execution from a test data generation
perspective. In Proceedings of the 2014 IEEE 38th
Annual Computer Software and Applications Confer-
ence, COMPSAC ’14, pages 181–190, Washington, DC,
USA, 2014. IEEE Computer Society. ISBN 978-1-
4799-3575-8. doi: 10.1109/COMPSAC.2014.26. URL
http://dx.doi.org/10.1109/COMPSAC.2014.26.

[10] M. M. Eler, A. T. Endo, and V. H. Durelli. An empirical

study to quantify the characteristics of java programs that
may influence symbolic execution from a unit testing
perspective. Journal of Systems and Software, 121:281 –
297, 2016. ISSN 0164-1212. doi: http://dx.doi.org/10.
1016/j.jss.2016.03.020. URL http://www.sciencedirect.
com/science/article/pii/S0164121216000868.

[11] G. Fraser and A. Arcuri. Sound Empirical Evidence in
Software Testing. In Proceedings of the 2012 Interna-
tional Conference on Software Engineering, pages 178–
188, 2012.

[12] ISO. International standard ISO/IEC 9126. information
technology:Software product evaluation: Quality charac-
teristics and quidelines for their use. ISO, 1991.

[13] A. Kout, F. Toure, and M. Badri. An empirical analysis
of a testability model for object-oriented programs. SIG-
SOFT Softw. Eng. Notes, 36(4):1–5, Aug. 2011. ISSN
0163-5948. doi: 10.1145/1988997.1989020. URL http:
//doi.acm.org/10.1145/1988997.1989020.

[14] T. McCabe, U. S. N. B. of Standards, and M. . Associates.
Structured Testing: A Software Testing Methodology Us-
ing the Cyclomatic Complexity Metric. NBS special
publication. U.S. Department of Commerce, National
Bureau of Standards, 1982. URL https://books.google.
co.uk/books?id=AzduMAEACAAJ.

[15] G. J. Myers. The Art of Software Testing. Wiley, New
York, 1979.

[16] I. Rodrguez, L. Llana, and P. Rabanal. A general
testability theory: Classes, properties, complexity, and
testing reductions. IEEE Transactions on Software En-
gineering, 40(9):862–894, Sept 2014. ISSN 0098-5589.
doi: 10.1109/TSE.2014.2331690.

[17] A. Tahir, S. G. MacDonell, and J. Buchan. Understanding
class-level testability through dynamic analysis. pages 1–
10, April 2014.

[18] J. M. Voas and K. W. Miller. Semantic metrics for
software testability. J. Syst. Softw., 20(3):207–216, Mar.
1993. ISSN 0164-1212. doi: 10.1016/0164-1212(93)
90064-5. URL http://dx.doi.org/10.1016/0164-1212(93)
90064-5.

[19] J. M. Voas and K. W. Miller. Software testability: The
new verification. IEEE Softw., 12(3):17–28, May 1995.
ISSN 0740-7459. doi: 10.1109/52.382180. URL http:
//dx.doi.org/10.1109/52.382180.

[20] Y. Zhou, H. Leung, Q. Song, J. Zhao, H. Lu, L. Chen,
and B. Xu. An in-depth investigation into the rela-
tionships between structural metrics and unit testability
in object-oriented systems. Science China Information
Sciences, 55(12):2800–2815, 2012. ISSN 1869-1919.
doi: 10.1007/s11432-012-4745-x. URL http://dx.doi.org/
10.1007/s11432-012-4745-x.

